Description: Categories isomorphic to a thin category are thin. Example 3.26(2) of Adamek p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv . (Contributed by Zhi Wang, 18-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincciso2.c | |- C = ( CatCat ` U ) |
|
| thincciso2.b | |- B = ( Base ` C ) |
||
| thincciso2.u | |- ( ph -> U e. V ) |
||
| thincciso2.x | |- ( ph -> X e. B ) |
||
| thincciso2.y | |- ( ph -> Y e. B ) |
||
| thincciso2.i | |- I = ( Iso ` C ) |
||
| thincciso2.f | |- ( ph -> F e. ( X I Y ) ) |
||
| thincciso3.xt | |- ( ph -> X e. ThinCat ) |
||
| Assertion | thincciso3 | |- ( ph -> Y e. ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincciso2.c | |- C = ( CatCat ` U ) |
|
| 2 | thincciso2.b | |- B = ( Base ` C ) |
|
| 3 | thincciso2.u | |- ( ph -> U e. V ) |
|
| 4 | thincciso2.x | |- ( ph -> X e. B ) |
|
| 5 | thincciso2.y | |- ( ph -> Y e. B ) |
|
| 6 | thincciso2.i | |- I = ( Iso ` C ) |
|
| 7 | thincciso2.f | |- ( ph -> F e. ( X I Y ) ) |
|
| 8 | thincciso3.xt | |- ( ph -> X e. ThinCat ) |
|
| 9 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
| 10 | 1 | catccat | |- ( U e. V -> C e. Cat ) |
| 11 | 3 10 | syl | |- ( ph -> C e. Cat ) |
| 12 | 2 9 11 4 5 6 | invf | |- ( ph -> ( X ( Inv ` C ) Y ) : ( X I Y ) --> ( Y I X ) ) |
| 13 | 12 7 | ffvelcdmd | |- ( ph -> ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y I X ) ) |
| 14 | 1 2 3 5 4 6 13 8 | thincciso2 | |- ( ph -> Y e. ThinCat ) |