Metamath Proof Explorer


Theorem thincciso3

Description: Categories isomorphic to a thin category are thin. Example 3.26(2) of Adamek p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv . (Contributed by Zhi Wang, 18-Oct-2025)

Ref Expression
Hypotheses thincciso2.c
|- C = ( CatCat ` U )
thincciso2.b
|- B = ( Base ` C )
thincciso2.u
|- ( ph -> U e. V )
thincciso2.x
|- ( ph -> X e. B )
thincciso2.y
|- ( ph -> Y e. B )
thincciso2.i
|- I = ( Iso ` C )
thincciso2.f
|- ( ph -> F e. ( X I Y ) )
thincciso3.xt
|- ( ph -> X e. ThinCat )
Assertion thincciso3
|- ( ph -> Y e. ThinCat )

Proof

Step Hyp Ref Expression
1 thincciso2.c
 |-  C = ( CatCat ` U )
2 thincciso2.b
 |-  B = ( Base ` C )
3 thincciso2.u
 |-  ( ph -> U e. V )
4 thincciso2.x
 |-  ( ph -> X e. B )
5 thincciso2.y
 |-  ( ph -> Y e. B )
6 thincciso2.i
 |-  I = ( Iso ` C )
7 thincciso2.f
 |-  ( ph -> F e. ( X I Y ) )
8 thincciso3.xt
 |-  ( ph -> X e. ThinCat )
9 eqid
 |-  ( Inv ` C ) = ( Inv ` C )
10 1 catccat
 |-  ( U e. V -> C e. Cat )
11 3 10 syl
 |-  ( ph -> C e. Cat )
12 2 9 11 4 5 6 invf
 |-  ( ph -> ( X ( Inv ` C ) Y ) : ( X I Y ) --> ( Y I X ) )
13 12 7 ffvelcdmd
 |-  ( ph -> ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y I X ) )
14 1 2 3 5 4 6 13 8 thincciso2
 |-  ( ph -> Y e. ThinCat )