Metamath Proof Explorer


Theorem thincciso3

Description: Categories isomorphic to a thin category are thin. Example 3.26(2) of Adamek p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv . (Contributed by Zhi Wang, 18-Oct-2025)

Ref Expression
Hypotheses thincciso2.c 𝐶 = ( CatCat ‘ 𝑈 )
thincciso2.b 𝐵 = ( Base ‘ 𝐶 )
thincciso2.u ( 𝜑𝑈𝑉 )
thincciso2.x ( 𝜑𝑋𝐵 )
thincciso2.y ( 𝜑𝑌𝐵 )
thincciso2.i 𝐼 = ( Iso ‘ 𝐶 )
thincciso2.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
thincciso3.xt ( 𝜑𝑋 ∈ ThinCat )
Assertion thincciso3 ( 𝜑𝑌 ∈ ThinCat )

Proof

Step Hyp Ref Expression
1 thincciso2.c 𝐶 = ( CatCat ‘ 𝑈 )
2 thincciso2.b 𝐵 = ( Base ‘ 𝐶 )
3 thincciso2.u ( 𝜑𝑈𝑉 )
4 thincciso2.x ( 𝜑𝑋𝐵 )
5 thincciso2.y ( 𝜑𝑌𝐵 )
6 thincciso2.i 𝐼 = ( Iso ‘ 𝐶 )
7 thincciso2.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
8 thincciso3.xt ( 𝜑𝑋 ∈ ThinCat )
9 eqid ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 )
10 1 catccat ( 𝑈𝑉𝐶 ∈ Cat )
11 3 10 syl ( 𝜑𝐶 ∈ Cat )
12 2 9 11 4 5 6 invf ( 𝜑 → ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) )
13 12 7 ffvelcdmd ( 𝜑 → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 𝐼 𝑋 ) )
14 1 2 3 5 4 6 13 8 thincciso2 ( 𝜑𝑌 ∈ ThinCat )