| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thincciso2.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
thincciso2.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
thincciso2.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 4 |
|
thincciso2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
thincciso2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
thincciso4.i |
⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |
| 7 |
|
eqid |
⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) |
| 8 |
1
|
catccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 |
7 2 9 4 5
|
cic |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 11 |
6 10
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) → ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 13 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑈 ∈ 𝑉 ) |
| 14 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 15 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 17 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑋 ∈ ThinCat ) |
| 18 |
1 2 13 14 15 7 16 17
|
thincciso3 |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑌 ∈ ThinCat ) |
| 19 |
12 18
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ThinCat ) → 𝑌 ∈ ThinCat ) |
| 20 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) → ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 21 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑈 ∈ 𝑉 ) |
| 22 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 23 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 24 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑌 ∈ ThinCat ) |
| 26 |
1 2 21 22 23 7 24 25
|
thincciso2 |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑋 ∈ ThinCat ) |
| 27 |
20 26
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ThinCat ) → 𝑋 ∈ ThinCat ) |
| 28 |
19 27
|
impbida |
⊢ ( 𝜑 → ( 𝑋 ∈ ThinCat ↔ 𝑌 ∈ ThinCat ) ) |