Metamath Proof Explorer


Theorem thincciso2

Description: Categories isomorphic to a thin category are thin. Example 3.26(2) of Adamek p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv . (Contributed by Zhi Wang, 18-Oct-2025)

Ref Expression
Hypotheses thincciso2.c 𝐶 = ( CatCat ‘ 𝑈 )
thincciso2.b 𝐵 = ( Base ‘ 𝐶 )
thincciso2.u ( 𝜑𝑈𝑉 )
thincciso2.x ( 𝜑𝑋𝐵 )
thincciso2.y ( 𝜑𝑌𝐵 )
thincciso2.i 𝐼 = ( Iso ‘ 𝐶 )
thincciso2.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
thincciso2.yt ( 𝜑𝑌 ∈ ThinCat )
Assertion thincciso2 ( 𝜑𝑋 ∈ ThinCat )

Proof

Step Hyp Ref Expression
1 thincciso2.c 𝐶 = ( CatCat ‘ 𝑈 )
2 thincciso2.b 𝐵 = ( Base ‘ 𝐶 )
3 thincciso2.u ( 𝜑𝑈𝑉 )
4 thincciso2.x ( 𝜑𝑋𝐵 )
5 thincciso2.y ( 𝜑𝑌𝐵 )
6 thincciso2.i 𝐼 = ( Iso ‘ 𝐶 )
7 thincciso2.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
8 thincciso2.yt ( 𝜑𝑌 ∈ ThinCat )
9 eqidd ( 𝜑 → ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) )
10 eqidd ( 𝜑 → ( Hom ‘ 𝑋 ) = ( Hom ‘ 𝑋 ) )
11 relfull Rel ( 𝑋 Full 𝑌 )
12 relin1 ( Rel ( 𝑋 Full 𝑌 ) → Rel ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) )
13 11 12 ax-mp Rel ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) )
14 eqid ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 )
15 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
16 1 2 14 15 3 4 5 6 catciso ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ) )
17 7 16 mpbid ( 𝜑 → ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) )
18 17 simpld ( 𝜑𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) )
19 1st2ndbr ( ( Rel ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ) → ( 1st𝐹 ) ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ( 2nd𝐹 ) )
20 13 18 19 sylancr ( 𝜑 → ( 1st𝐹 ) ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ( 2nd𝐹 ) )
21 eqid ( Hom ‘ 𝑋 ) = ( Hom ‘ 𝑋 )
22 eqid ( Hom ‘ 𝑌 ) = ( Hom ‘ 𝑌 )
23 14 21 22 isffth2 ( ( 1st𝐹 ) ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ( 2nd𝐹 ) ↔ ( ( 1st𝐹 ) ( 𝑋 Func 𝑌 ) ( 2nd𝐹 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑋 ) ∀ 𝑦 ∈ ( Base ‘ 𝑋 ) ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) –1-1-onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
24 20 23 sylib ( 𝜑 → ( ( 1st𝐹 ) ( 𝑋 Func 𝑌 ) ( 2nd𝐹 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑋 ) ∀ 𝑦 ∈ ( Base ‘ 𝑋 ) ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) –1-1-onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
25 24 simprd ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑋 ) ∀ 𝑦 ∈ ( Base ‘ 𝑋 ) ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) –1-1-onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
26 25 r19.21bi ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑋 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑋 ) ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) –1-1-onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
27 26 r19.21bi ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) –1-1-onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
28 27 anasss ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) –1-1-onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
29 ovex ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ∈ V
30 29 f1oen ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) –1-1-onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) → ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ≈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
31 28 30 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ≈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
32 8 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑌 ∈ ThinCat )
33 24 simpld ( 𝜑 → ( 1st𝐹 ) ( 𝑋 Func 𝑌 ) ( 2nd𝐹 ) )
34 14 15 33 funcf1 ( 𝜑 → ( 1st𝐹 ) : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) )
35 34 ffvelcdmda ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 1st𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑌 ) )
36 35 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( 1st𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑌 ) )
37 34 ffvelcdmda ( ( 𝜑𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( 1st𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑌 ) )
38 37 adantrl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( 1st𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑌 ) )
39 32 36 38 15 22 thincmo ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ∃* 𝑓 𝑓 ∈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
40 modom2 ( ∃* 𝑓 𝑓 ∈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ↔ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ≼ 1o )
41 39 40 sylib ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ≼ 1o )
42 endomtr ( ( ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ≈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∧ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ≼ 1o ) → ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ≼ 1o )
43 31 41 42 syl2anc ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ≼ 1o )
44 modom2 ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ↔ ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ≼ 1o )
45 43 44 sylibr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) )
46 33 funcrcl2 ( 𝜑𝑋 ∈ Cat )
47 9 10 45 46 isthincd ( 𝜑𝑋 ∈ ThinCat )