| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thincciso2.c |
|
| 2 |
|
thincciso2.b |
|
| 3 |
|
thincciso2.u |
|
| 4 |
|
thincciso2.x |
|
| 5 |
|
thincciso2.y |
|
| 6 |
|
thincciso2.i |
|
| 7 |
|
thincciso2.f |
|
| 8 |
|
thincciso2.yt |
|
| 9 |
|
eqidd |
|
| 10 |
|
eqidd |
|
| 11 |
|
relfull |
|
| 12 |
|
relin1 |
|
| 13 |
11 12
|
ax-mp |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
1 2 14 15 3 4 5 6
|
catciso |
|
| 17 |
7 16
|
mpbid |
|
| 18 |
17
|
simpld |
|
| 19 |
|
1st2ndbr |
|
| 20 |
13 18 19
|
sylancr |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
14 21 22
|
isffth2 |
|
| 24 |
20 23
|
sylib |
|
| 25 |
24
|
simprd |
|
| 26 |
25
|
r19.21bi |
|
| 27 |
26
|
r19.21bi |
|
| 28 |
27
|
anasss |
|
| 29 |
|
ovex |
|
| 30 |
29
|
f1oen |
|
| 31 |
28 30
|
syl |
|
| 32 |
8
|
adantr |
|
| 33 |
24
|
simpld |
|
| 34 |
14 15 33
|
funcf1 |
|
| 35 |
34
|
ffvelcdmda |
|
| 36 |
35
|
adantrr |
|
| 37 |
34
|
ffvelcdmda |
|
| 38 |
37
|
adantrl |
|
| 39 |
32 36 38 15 22
|
thincmo |
|
| 40 |
|
modom2 |
|
| 41 |
39 40
|
sylib |
|
| 42 |
|
endomtr |
|
| 43 |
31 41 42
|
syl2anc |
|
| 44 |
|
modom2 |
|
| 45 |
43 44
|
sylibr |
|
| 46 |
33
|
funcrcl2 |
|
| 47 |
9 10 45 46
|
isthincd |
|