Metamath Proof Explorer


Theorem isthincd

Description: The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthincd.b φB=BaseC
isthincd.h φH=HomC
isthincd.t φxByB*ffxHy
isthincd.c φCCat
Assertion isthincd Could not format assertion : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-

Proof

Step Hyp Ref Expression
1 isthincd.b φB=BaseC
2 isthincd.h φH=HomC
3 isthincd.t φxByB*ffxHy
4 isthincd.c φCCat
5 3 ralrimivva φxByB*ffxHy
6 2 oveqd φxHy=xHomCy
7 6 eleq2d φfxHyfxHomCy
8 7 mobidv φ*ffxHy*ffxHomCy
9 1 8 raleqbidv φyB*ffxHyyBaseC*ffxHomCy
10 1 9 raleqbidv φxByB*ffxHyxBaseCyBaseC*ffxHomCy
11 5 10 mpbid φxBaseCyBaseC*ffxHomCy
12 eqid BaseC=BaseC
13 eqid HomC=HomC
14 12 13 isthinc Could not format ( C e. ThinCat <-> ( C e. Cat /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) : No typesetting found for |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) with typecode |-
15 4 11 14 sylanbrc Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-