Metamath Proof Explorer


Theorem isthincd2

Description: The predicate " C is a thin category" without knowing C is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthincd.b φB=BaseC
isthincd.h φH=HomC
isthincd.t φxByB*ffxHy
isthincd2.o φ·˙=compC
isthincd2.c φCV
isthincd2.ps ψxByBzBfxHygyHz
isthincd2.1 φyB1˙yHy
isthincd2.2 φψgxy·˙zfxHz
Assertion isthincd2 Could not format assertion : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> .1. ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 isthincd.b φB=BaseC
2 isthincd.h φH=HomC
3 isthincd.t φxByB*ffxHy
4 isthincd2.o φ·˙=compC
5 isthincd2.c φCV
6 isthincd2.ps ψxByBzBfxHygyHz
7 isthincd2.1 φyB1˙yHy
8 isthincd2.2 φψgxy·˙zfxHz
9 3an4anass xByBzBwBxByBzBwB
10 9 anbi1i xByBzBwBfxHygyHzkzHwxByBzBwBfxHygyHzkzHw
11 6 3anbi1i ψwBkzHwxByBzBfxHygyHzwBkzHw
12 3anass xByBzBfxHygyHzwBkzHwxByBzBfxHygyHzwBkzHw
13 an4 xByBzBfxHygyHzwBkzHwxByBzBwBfxHygyHzkzHw
14 11 12 13 3bitri ψwBkzHwxByBzBwBfxHygyHzkzHw
15 df-3an fxHygyHzkzHwfxHygyHzkzHw
16 15 anbi2i xByBzBwBfxHygyHzkzHwxByBzBwBfxHygyHzkzHw
17 10 14 16 3bitr4i ψwBkzHwxByBzBwBfxHygyHzkzHw
18 df-3an xByBzBwBfxHygyHzkzHwxByBzBwBfxHygyHzkzHw
19 17 18 bitr4i ψwBkzHwxByBzBwBfxHygyHzkzHw
20 simpr1l φxByBzBwBfxHygyHzkzHwxB
21 simpr1r φxByBzBwBfxHygyHzkzHwyB
22 simpr31 φxByBzBwBfxHygyHzkzHwfxHy
23 21 7 syldan φxByBzBwBfxHygyHzkzHw1˙yHy
24 6 bianass φψφxByBzBfxHygyHz
25 24 8 sylbir φxByBzBfxHygyHzgxy·˙zfxHz
26 25 ralrimivva φxByBzBfxHygyHzgxy·˙zfxHz
27 26 ralrimivvva φxByBzBfxHygyHzgxy·˙zfxHz
28 27 adantr φxByBzBwBfxHygyHzkzHwxByBzBfxHygyHzgxy·˙zfxHz
29 20 21 21 22 23 28 isthincd2lem2 φxByBzBwBfxHygyHzkzHw1˙xy·˙yfxHy
30 3 ralrimivva φxByB*ffxHy
31 30 adantr φxByBzBwBfxHygyHzkzHwxByB*ffxHy
32 20 21 29 22 31 isthincd2lem1 φxByBzBwBfxHygyHzkzHw1˙xy·˙yf=f
33 19 32 sylan2b φψwBkzHw1˙xy·˙yf=f
34 simpr2l φxByBzBwBfxHygyHzkzHwzB
35 simpr32 φxByBzBwBfxHygyHzkzHwgyHz
36 21 21 34 23 35 28 isthincd2lem2 φxByBzBwBfxHygyHzkzHwgyy·˙z1˙yHz
37 21 34 36 35 31 isthincd2lem1 φxByBzBwBfxHygyHzkzHwgyy·˙z1˙=g
38 19 37 sylan2b φψwBkzHwgyy·˙z1˙=g
39 8 3ad2antr1 φψwBkzHwgxy·˙zfxHz
40 simpr2r φxByBzBwBfxHygyHzkzHwwB
41 simpr33 φxByBzBwBfxHygyHzkzHwkzHw
42 21 34 40 35 41 28 isthincd2lem2 φxByBzBwBfxHygyHzkzHwkyz·˙wgyHw
43 20 21 40 22 42 28 isthincd2lem2 φxByBzBwBfxHygyHzkzHwkyz·˙wgxy·˙wfxHw
44 19 39 sylan2br φxByBzBwBfxHygyHzkzHwgxy·˙zfxHz
45 20 34 40 44 41 28 isthincd2lem2 φxByBzBwBfxHygyHzkzHwkxz·˙wgxy·˙zfxHw
46 20 40 43 45 31 isthincd2lem1 φxByBzBwBfxHygyHzkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zf
47 19 46 sylan2b φψwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zf
48 1 2 4 5 19 7 33 38 39 47 iscatd2 φCCatIdC=yB1˙
49 48 simpld φCCat
50 1 2 3 49 isthincd Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
51 48 simprd φIdC=yB1˙
52 50 51 jca Could not format ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> .1. ) ) ) : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> .1. ) ) ) with typecode |-