| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isthincd.b |
|
| 2 |
|
isthincd.h |
|
| 3 |
|
isthincd.t |
|
| 4 |
|
isthincd2.o |
|
| 5 |
|
isthincd2.c |
|
| 6 |
|
isthincd2.ps |
|
| 7 |
|
isthincd2.1 |
|
| 8 |
|
isthincd2.2 |
|
| 9 |
|
3an4anass |
|
| 10 |
9
|
anbi1i |
|
| 11 |
6
|
3anbi1i |
|
| 12 |
|
3anass |
|
| 13 |
|
an4 |
|
| 14 |
11 12 13
|
3bitri |
|
| 15 |
|
df-3an |
|
| 16 |
15
|
anbi2i |
|
| 17 |
10 14 16
|
3bitr4i |
|
| 18 |
|
df-3an |
|
| 19 |
17 18
|
bitr4i |
|
| 20 |
|
simpr1l |
|
| 21 |
|
simpr1r |
|
| 22 |
|
simpr31 |
|
| 23 |
21 7
|
syldan |
|
| 24 |
6
|
bianass |
|
| 25 |
24 8
|
sylbir |
|
| 26 |
25
|
ralrimivva |
|
| 27 |
26
|
ralrimivvva |
|
| 28 |
27
|
adantr |
|
| 29 |
20 21 21 22 23 28
|
isthincd2lem2 |
|
| 30 |
3
|
ralrimivva |
|
| 31 |
30
|
adantr |
|
| 32 |
20 21 29 22 31
|
isthincd2lem1 |
|
| 33 |
19 32
|
sylan2b |
|
| 34 |
|
simpr2l |
|
| 35 |
|
simpr32 |
|
| 36 |
21 21 34 23 35 28
|
isthincd2lem2 |
|
| 37 |
21 34 36 35 31
|
isthincd2lem1 |
|
| 38 |
19 37
|
sylan2b |
|
| 39 |
8
|
3ad2antr1 |
|
| 40 |
|
simpr2r |
|
| 41 |
|
simpr33 |
|
| 42 |
21 34 40 35 41 28
|
isthincd2lem2 |
|
| 43 |
20 21 40 22 42 28
|
isthincd2lem2 |
|
| 44 |
19 39
|
sylan2br |
|
| 45 |
20 34 40 44 41 28
|
isthincd2lem2 |
|
| 46 |
20 40 43 45 31
|
isthincd2lem1 |
|
| 47 |
19 46
|
sylan2b |
|
| 48 |
1 2 4 5 19 7 33 38 39 47
|
iscatd2 |
|
| 49 |
48
|
simpld |
|
| 50 |
1 2 3 49
|
isthincd |
|
| 51 |
48
|
simprd |
|
| 52 |
50 51
|
jca |
|