Metamath Proof Explorer


Theorem isthincd2lem1

Description: Lemma for isthincd2 and thincmo2 . (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthincd2lem1.1 φXB
isthincd2lem1.2 φYB
isthincd2lem1.3 φFXHY
isthincd2lem1.4 φGXHY
isthincd2lem1.5 φxByB*ffxHy
Assertion isthincd2lem1 φF=G

Proof

Step Hyp Ref Expression
1 isthincd2lem1.1 φXB
2 isthincd2lem1.2 φYB
3 isthincd2lem1.3 φFXHY
4 isthincd2lem1.4 φGXHY
5 isthincd2lem1.5 φxByB*ffxHy
6 oveq1 x=zxHy=zHy
7 6 eleq2d x=zfxHyfzHy
8 7 mobidv x=z*ffxHy*ffzHy
9 oveq2 y=wzHy=zHw
10 9 eleq2d y=wfzHyfzHw
11 10 mobidv y=w*ffzHy*ffzHw
12 8 11 cbvral2vw xByB*ffxHyzBwB*ffzHw
13 5 12 sylib φzBwB*ffzHw
14 oveq1 z=XzHw=XHw
15 14 eleq2d z=XfzHwfXHw
16 15 mobidv z=X*ffzHw*ffXHw
17 nfv kfXHw
18 nfv fkXHw
19 eleq1w f=kfXHwkXHw
20 17 18 19 cbvmow *ffXHw*kkXHw
21 oveq2 w=YXHw=XHY
22 21 eleq2d w=YkXHwkXHY
23 22 mobidv w=Y*kkXHw*kkXHY
24 20 23 bitrid w=Y*ffXHw*kkXHY
25 eqidd φz=XB=B
26 16 24 1 25 2 rspc2vd φzBwB*ffzHw*kkXHY
27 13 26 mpd φ*kkXHY
28 moel *kkXHYkXHYlXHYk=l
29 27 28 sylib φkXHYlXHYk=l
30 eqeq1 k=Fk=lF=l
31 eqeq2 l=GF=lF=G
32 eqidd φk=FXHY=XHY
33 30 31 3 32 4 rspc2vd φkXHYlXHYk=lF=G
34 29 33 mpd φF=G