Description: Lemma for isthincd2 and thincmo2 . (Contributed by Zhi Wang, 17-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isthincd2lem1.1 | |
|
isthincd2lem1.2 | |
||
isthincd2lem1.3 | |
||
isthincd2lem1.4 | |
||
isthincd2lem1.5 | |
||
Assertion | isthincd2lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isthincd2lem1.1 | |
|
2 | isthincd2lem1.2 | |
|
3 | isthincd2lem1.3 | |
|
4 | isthincd2lem1.4 | |
|
5 | isthincd2lem1.5 | |
|
6 | oveq1 | |
|
7 | 6 | eleq2d | |
8 | 7 | mobidv | |
9 | oveq2 | |
|
10 | 9 | eleq2d | |
11 | 10 | mobidv | |
12 | 8 11 | cbvral2vw | |
13 | 5 12 | sylib | |
14 | oveq1 | |
|
15 | 14 | eleq2d | |
16 | 15 | mobidv | |
17 | nfv | |
|
18 | nfv | |
|
19 | eleq1w | |
|
20 | 17 18 19 | cbvmow | |
21 | oveq2 | |
|
22 | 21 | eleq2d | |
23 | 22 | mobidv | |
24 | 20 23 | bitrid | |
25 | eqidd | |
|
26 | 16 24 1 25 2 | rspc2vd | |
27 | 13 26 | mpd | |
28 | moel | |
|
29 | 27 28 | sylib | |
30 | eqeq1 | |
|
31 | eqeq2 | |
|
32 | eqidd | |
|
33 | 30 31 3 32 4 | rspc2vd | |
34 | 29 33 | mpd | |