Metamath Proof Explorer


Theorem cbvmow

Description: Rule used to change bound variables, using implicit substitution. Version of cbvmo with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 9-Mar-1995) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvmow.1 yφ
cbvmow.2 xψ
cbvmow.3 x=yφψ
Assertion cbvmow *xφ*yψ

Proof

Step Hyp Ref Expression
1 cbvmow.1 yφ
2 cbvmow.2 xψ
3 cbvmow.3 x=yφψ
4 nfv yx=z
5 1 4 nfim yφx=z
6 nfv xy=z
7 2 6 nfim xψy=z
8 equequ1 x=yx=zy=z
9 3 8 imbi12d x=yφx=zψy=z
10 5 7 9 cbvalv1 xφx=zyψy=z
11 10 exbii zxφx=zzyψy=z
12 df-mo *xφzxφx=z
13 df-mo *yψzyψy=z
14 11 12 13 3bitr4i *xφ*yψ