Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
cbvmow
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbvmo with a disjoint variable condition, which does not
require ax-10 , ax-13 . (Contributed by NM , 9-Mar-1995) (Revised by Gino Giotto , 23-May-2024)
Ref
Expression
Hypotheses
cbvmow.1
⊢ Ⅎ 𝑦 𝜑
cbvmow.2
⊢ Ⅎ 𝑥 𝜓
cbvmow.3
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
Assertion
cbvmow
⊢ ( ∃* 𝑥 𝜑 ↔ ∃* 𝑦 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
cbvmow.1
⊢ Ⅎ 𝑦 𝜑
2
cbvmow.2
⊢ Ⅎ 𝑥 𝜓
3
cbvmow.3
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
4
nfv
⊢ Ⅎ 𝑦 𝑥 = 𝑧
5
1 4
nfim
⊢ Ⅎ 𝑦 ( 𝜑 → 𝑥 = 𝑧 )
6
nfv
⊢ Ⅎ 𝑥 𝑦 = 𝑧
7
2 6
nfim
⊢ Ⅎ 𝑥 ( 𝜓 → 𝑦 = 𝑧 )
8
equequ1
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) )
9
3 8
imbi12d
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝑥 = 𝑧 ) ↔ ( 𝜓 → 𝑦 = 𝑧 ) ) )
10
5 7 9
cbvalv1
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ( 𝜓 → 𝑦 = 𝑧 ) )
11
10
exbii
⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝜓 → 𝑦 = 𝑧 ) )
12
df-mo
⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) )
13
df-mo
⊢ ( ∃* 𝑦 𝜓 ↔ ∃ 𝑧 ∀ 𝑦 ( 𝜓 → 𝑦 = 𝑧 ) )
14
11 12 13
3bitr4i
⊢ ( ∃* 𝑥 𝜑 ↔ ∃* 𝑦 𝜓 )