Metamath Proof Explorer


Theorem isthincd2lem1

Description: Lemma for isthincd2 and thincmo2 . (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthincd2lem1.1 ( 𝜑𝑋𝐵 )
isthincd2lem1.2 ( 𝜑𝑌𝐵 )
isthincd2lem1.3 ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
isthincd2lem1.4 ( 𝜑𝐺 ∈ ( 𝑋 𝐻 𝑌 ) )
isthincd2lem1.5 ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) )
Assertion isthincd2lem1 ( 𝜑𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 isthincd2lem1.1 ( 𝜑𝑋𝐵 )
2 isthincd2lem1.2 ( 𝜑𝑌𝐵 )
3 isthincd2lem1.3 ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
4 isthincd2lem1.4 ( 𝜑𝐺 ∈ ( 𝑋 𝐻 𝑌 ) )
5 isthincd2lem1.5 ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) )
6 oveq1 ( 𝑥 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑦 ) )
7 6 eleq2d ( 𝑥 = 𝑧 → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ) )
8 7 mobidv ( 𝑥 = 𝑧 → ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ) )
9 oveq2 ( 𝑦 = 𝑤 → ( 𝑧 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) )
10 9 eleq2d ( 𝑦 = 𝑤 → ( 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ) )
11 10 mobidv ( 𝑦 = 𝑤 → ( ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ) )
12 8 11 cbvral2vw ( ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∀ 𝑧𝐵𝑤𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) )
13 5 12 sylib ( 𝜑 → ∀ 𝑧𝐵𝑤𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) )
14 oveq1 ( 𝑧 = 𝑋 → ( 𝑧 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑤 ) )
15 14 eleq2d ( 𝑧 = 𝑋 → ( 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ) )
16 15 mobidv ( 𝑧 = 𝑋 → ( ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ) )
17 nfv 𝑘 𝑓 ∈ ( 𝑋 𝐻 𝑤 )
18 nfv 𝑓 𝑘 ∈ ( 𝑋 𝐻 𝑤 )
19 eleq1w ( 𝑓 = 𝑘 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) ) )
20 17 18 19 cbvmow ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ↔ ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) )
21 oveq2 ( 𝑤 = 𝑌 → ( 𝑋 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑌 ) )
22 21 eleq2d ( 𝑤 = 𝑌 → ( 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) )
23 22 mobidv ( 𝑤 = 𝑌 → ( ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) ↔ ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) )
24 20 23 syl5bb ( 𝑤 = 𝑌 → ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ↔ ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) )
25 eqidd ( ( 𝜑𝑧 = 𝑋 ) → 𝐵 = 𝐵 )
26 16 24 1 25 2 rspc2vd ( 𝜑 → ( ∀ 𝑧𝐵𝑤𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) → ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) )
27 13 26 mpd ( 𝜑 → ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) )
28 moel ( ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ↔ ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑘 = 𝑙 )
29 27 28 sylib ( 𝜑 → ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑘 = 𝑙 )
30 eqeq1 ( 𝑘 = 𝐹 → ( 𝑘 = 𝑙𝐹 = 𝑙 ) )
31 eqeq2 ( 𝑙 = 𝐺 → ( 𝐹 = 𝑙𝐹 = 𝐺 ) )
32 eqidd ( ( 𝜑𝑘 = 𝐹 ) → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 𝐻 𝑌 ) )
33 30 31 3 32 4 rspc2vd ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑘 = 𝑙𝐹 = 𝐺 ) )
34 29 33 mpd ( 𝜑𝐹 = 𝐺 )