| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thincciso2.c |
|- C = ( CatCat ` U ) |
| 2 |
|
thincciso2.b |
|- B = ( Base ` C ) |
| 3 |
|
thincciso2.u |
|- ( ph -> U e. V ) |
| 4 |
|
thincciso2.x |
|- ( ph -> X e. B ) |
| 5 |
|
thincciso2.y |
|- ( ph -> Y e. B ) |
| 6 |
|
thincciso2.i |
|- I = ( Iso ` C ) |
| 7 |
|
thincciso2.f |
|- ( ph -> F e. ( X I Y ) ) |
| 8 |
|
thincciso2.yt |
|- ( ph -> Y e. ThinCat ) |
| 9 |
|
eqidd |
|- ( ph -> ( Base ` X ) = ( Base ` X ) ) |
| 10 |
|
eqidd |
|- ( ph -> ( Hom ` X ) = ( Hom ` X ) ) |
| 11 |
|
relfull |
|- Rel ( X Full Y ) |
| 12 |
|
relin1 |
|- ( Rel ( X Full Y ) -> Rel ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
| 13 |
11 12
|
ax-mp |
|- Rel ( ( X Full Y ) i^i ( X Faith Y ) ) |
| 14 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
| 15 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 16 |
1 2 14 15 3 4 5 6
|
catciso |
|- ( ph -> ( F e. ( X I Y ) <-> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) ) ) |
| 17 |
7 16
|
mpbid |
|- ( ph -> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) ) |
| 18 |
17
|
simpld |
|- ( ph -> F e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
| 19 |
|
1st2ndbr |
|- ( ( Rel ( ( X Full Y ) i^i ( X Faith Y ) ) /\ F e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) -> ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) ) |
| 20 |
13 18 19
|
sylancr |
|- ( ph -> ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) ) |
| 21 |
|
eqid |
|- ( Hom ` X ) = ( Hom ` X ) |
| 22 |
|
eqid |
|- ( Hom ` Y ) = ( Hom ` Y ) |
| 23 |
14 21 22
|
isffth2 |
|- ( ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) <-> ( ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) /\ A. x e. ( Base ` X ) A. y e. ( Base ` X ) ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) ) |
| 24 |
20 23
|
sylib |
|- ( ph -> ( ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) /\ A. x e. ( Base ` X ) A. y e. ( Base ` X ) ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) ) |
| 25 |
24
|
simprd |
|- ( ph -> A. x e. ( Base ` X ) A. y e. ( Base ` X ) ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 26 |
25
|
r19.21bi |
|- ( ( ph /\ x e. ( Base ` X ) ) -> A. y e. ( Base ` X ) ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 27 |
26
|
r19.21bi |
|- ( ( ( ph /\ x e. ( Base ` X ) ) /\ y e. ( Base ` X ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 28 |
27
|
anasss |
|- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 29 |
|
ovex |
|- ( x ( Hom ` X ) y ) e. _V |
| 30 |
29
|
f1oen |
|- ( ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) -> ( x ( Hom ` X ) y ) ~~ ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 31 |
28 30
|
syl |
|- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( x ( Hom ` X ) y ) ~~ ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 32 |
8
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> Y e. ThinCat ) |
| 33 |
24
|
simpld |
|- ( ph -> ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) ) |
| 34 |
14 15 33
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` X ) --> ( Base ` Y ) ) |
| 35 |
34
|
ffvelcdmda |
|- ( ( ph /\ x e. ( Base ` X ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` Y ) ) |
| 36 |
35
|
adantrr |
|- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` Y ) ) |
| 37 |
34
|
ffvelcdmda |
|- ( ( ph /\ y e. ( Base ` X ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` Y ) ) |
| 38 |
37
|
adantrl |
|- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` Y ) ) |
| 39 |
32 36 38 15 22
|
thincmo |
|- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> E* f f e. ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 40 |
|
modom2 |
|- ( E* f f e. ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) <-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ~<_ 1o ) |
| 41 |
39 40
|
sylib |
|- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ~<_ 1o ) |
| 42 |
|
endomtr |
|- ( ( ( x ( Hom ` X ) y ) ~~ ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) /\ ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ~<_ 1o ) -> ( x ( Hom ` X ) y ) ~<_ 1o ) |
| 43 |
31 41 42
|
syl2anc |
|- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> ( x ( Hom ` X ) y ) ~<_ 1o ) |
| 44 |
|
modom2 |
|- ( E* f f e. ( x ( Hom ` X ) y ) <-> ( x ( Hom ` X ) y ) ~<_ 1o ) |
| 45 |
43 44
|
sylibr |
|- ( ( ph /\ ( x e. ( Base ` X ) /\ y e. ( Base ` X ) ) ) -> E* f f e. ( x ( Hom ` X ) y ) ) |
| 46 |
33
|
funcrcl2 |
|- ( ph -> X e. Cat ) |
| 47 |
9 10 45 46
|
isthincd |
|- ( ph -> X e. ThinCat ) |