Metamath Proof Explorer


Theorem thincciso4

Description: Two isomorphic categories are either both thin or neither. Note that "thincciso2.u" is redundant thanks to elbasfv . (Contributed by Zhi Wang, 18-Oct-2025)

Ref Expression
Hypotheses thincciso2.c C = CatCat U
thincciso2.b B = Base C
thincciso2.u φ U V
thincciso2.x φ X B
thincciso2.y φ Y B
thincciso4.i φ X 𝑐 C Y
Assertion thincciso4 φ X ThinCat Y ThinCat

Proof

Step Hyp Ref Expression
1 thincciso2.c C = CatCat U
2 thincciso2.b B = Base C
3 thincciso2.u φ U V
4 thincciso2.x φ X B
5 thincciso2.y φ Y B
6 thincciso4.i φ X 𝑐 C Y
7 eqid Iso C = Iso C
8 1 catccat U V C Cat
9 3 8 syl φ C Cat
10 7 2 9 4 5 cic φ X 𝑐 C Y f f X Iso C Y
11 6 10 mpbid φ f f X Iso C Y
12 11 adantr φ X ThinCat f f X Iso C Y
13 3 ad2antrr φ X ThinCat f X Iso C Y U V
14 4 ad2antrr φ X ThinCat f X Iso C Y X B
15 5 ad2antrr φ X ThinCat f X Iso C Y Y B
16 simpr φ X ThinCat f X Iso C Y f X Iso C Y
17 simplr φ X ThinCat f X Iso C Y X ThinCat
18 1 2 13 14 15 7 16 17 thincciso3 φ X ThinCat f X Iso C Y Y ThinCat
19 12 18 exlimddv φ X ThinCat Y ThinCat
20 11 adantr φ Y ThinCat f f X Iso C Y
21 3 ad2antrr φ Y ThinCat f X Iso C Y U V
22 4 ad2antrr φ Y ThinCat f X Iso C Y X B
23 5 ad2antrr φ Y ThinCat f X Iso C Y Y B
24 simpr φ Y ThinCat f X Iso C Y f X Iso C Y
25 simplr φ Y ThinCat f X Iso C Y Y ThinCat
26 1 2 21 22 23 7 24 25 thincciso2 φ Y ThinCat f X Iso C Y X ThinCat
27 20 26 exlimddv φ Y ThinCat X ThinCat
28 19 27 impbida φ X ThinCat Y ThinCat