Metamath Proof Explorer


Theorem termcterm3

Description: In the category of small categories, a terminal object is equivalent to a terminal category. (Contributed by Zhi Wang, 18-Oct-2025)

Ref Expression
Hypotheses termcterm.e
|- E = ( CatCat ` U )
termcterm3.u
|- ( ph -> U e. V )
termcterm3.c
|- ( ph -> C e. U )
termcterm3.1
|- ( ph -> ( SetCat ` 1o ) e. U )
Assertion termcterm3
|- ( ph -> ( C e. TermCat <-> C e. ( TermO ` E ) ) )

Proof

Step Hyp Ref Expression
1 termcterm.e
 |-  E = ( CatCat ` U )
2 termcterm3.u
 |-  ( ph -> U e. V )
3 termcterm3.c
 |-  ( ph -> C e. U )
4 termcterm3.1
 |-  ( ph -> ( SetCat ` 1o ) e. U )
5 2 adantr
 |-  ( ( ph /\ C e. TermCat ) -> U e. V )
6 3 adantr
 |-  ( ( ph /\ C e. TermCat ) -> C e. U )
7 simpr
 |-  ( ( ph /\ C e. TermCat ) -> C e. TermCat )
8 1 5 6 7 termcterm
 |-  ( ( ph /\ C e. TermCat ) -> C e. ( TermO ` E ) )
9 setc1oterm
 |-  ( SetCat ` 1o ) e. TermCat
10 9 a1i
 |-  ( ph -> ( SetCat ` 1o ) e. TermCat )
11 4 10 elind
 |-  ( ph -> ( SetCat ` 1o ) e. ( U i^i TermCat ) )
12 11 ne0d
 |-  ( ph -> ( U i^i TermCat ) =/= (/) )
13 12 adantr
 |-  ( ( ph /\ C e. ( TermO ` E ) ) -> ( U i^i TermCat ) =/= (/) )
14 simpr
 |-  ( ( ph /\ C e. ( TermO ` E ) ) -> C e. ( TermO ` E ) )
15 1 13 14 termcterm2
 |-  ( ( ph /\ C e. ( TermO ` E ) ) -> C e. TermCat )
16 8 15 impbida
 |-  ( ph -> ( C e. TermCat <-> C e. ( TermO ` E ) ) )