| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcterm.e |
|- E = ( CatCat ` U ) |
| 2 |
|
termcterm3.u |
|- ( ph -> U e. V ) |
| 3 |
|
termcterm3.c |
|- ( ph -> C e. U ) |
| 4 |
|
termcterm3.1 |
|- ( ph -> ( SetCat ` 1o ) e. U ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ C e. TermCat ) -> U e. V ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ C e. TermCat ) -> C e. U ) |
| 7 |
|
simpr |
|- ( ( ph /\ C e. TermCat ) -> C e. TermCat ) |
| 8 |
1 5 6 7
|
termcterm |
|- ( ( ph /\ C e. TermCat ) -> C e. ( TermO ` E ) ) |
| 9 |
|
setc1oterm |
|- ( SetCat ` 1o ) e. TermCat |
| 10 |
9
|
a1i |
|- ( ph -> ( SetCat ` 1o ) e. TermCat ) |
| 11 |
4 10
|
elind |
|- ( ph -> ( SetCat ` 1o ) e. ( U i^i TermCat ) ) |
| 12 |
11
|
ne0d |
|- ( ph -> ( U i^i TermCat ) =/= (/) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ C e. ( TermO ` E ) ) -> ( U i^i TermCat ) =/= (/) ) |
| 14 |
|
simpr |
|- ( ( ph /\ C e. ( TermO ` E ) ) -> C e. ( TermO ` E ) ) |
| 15 |
1 13 14
|
termcterm2 |
|- ( ( ph /\ C e. ( TermO ` E ) ) -> C e. TermCat ) |
| 16 |
8 15
|
impbida |
|- ( ph -> ( C e. TermCat <-> C e. ( TermO ` E ) ) ) |