Metamath Proof Explorer


Theorem termcterm3

Description: In the category of small categories, a terminal object is equivalent to a terminal category. (Contributed by Zhi Wang, 18-Oct-2025)

Ref Expression
Hypotheses termcterm.e 𝐸 = ( CatCat ‘ 𝑈 )
termcterm3.u ( 𝜑𝑈𝑉 )
termcterm3.c ( 𝜑𝐶𝑈 )
termcterm3.1 ( 𝜑 → ( SetCat ‘ 1o ) ∈ 𝑈 )
Assertion termcterm3 ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) )

Proof

Step Hyp Ref Expression
1 termcterm.e 𝐸 = ( CatCat ‘ 𝑈 )
2 termcterm3.u ( 𝜑𝑈𝑉 )
3 termcterm3.c ( 𝜑𝐶𝑈 )
4 termcterm3.1 ( 𝜑 → ( SetCat ‘ 1o ) ∈ 𝑈 )
5 2 adantr ( ( 𝜑𝐶 ∈ TermCat ) → 𝑈𝑉 )
6 3 adantr ( ( 𝜑𝐶 ∈ TermCat ) → 𝐶𝑈 )
7 simpr ( ( 𝜑𝐶 ∈ TermCat ) → 𝐶 ∈ TermCat )
8 1 5 6 7 termcterm ( ( 𝜑𝐶 ∈ TermCat ) → 𝐶 ∈ ( TermO ‘ 𝐸 ) )
9 setc1oterm ( SetCat ‘ 1o ) ∈ TermCat
10 9 a1i ( 𝜑 → ( SetCat ‘ 1o ) ∈ TermCat )
11 4 10 elind ( 𝜑 → ( SetCat ‘ 1o ) ∈ ( 𝑈 ∩ TermCat ) )
12 11 ne0d ( 𝜑 → ( 𝑈 ∩ TermCat ) ≠ ∅ )
13 12 adantr ( ( 𝜑𝐶 ∈ ( TermO ‘ 𝐸 ) ) → ( 𝑈 ∩ TermCat ) ≠ ∅ )
14 simpr ( ( 𝜑𝐶 ∈ ( TermO ‘ 𝐸 ) ) → 𝐶 ∈ ( TermO ‘ 𝐸 ) )
15 1 13 14 termcterm2 ( ( 𝜑𝐶 ∈ ( TermO ‘ 𝐸 ) ) → 𝐶 ∈ TermCat )
16 8 15 impbida ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) )