| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcterm.e |
⊢ 𝐸 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
termcterm3.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 3 |
|
termcterm3.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 4 |
|
termcterm3.1 |
⊢ ( 𝜑 → ( SetCat ‘ 1o ) ∈ 𝑈 ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ TermCat ) → 𝑈 ∈ 𝑉 ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ TermCat ) → 𝐶 ∈ 𝑈 ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ TermCat ) → 𝐶 ∈ TermCat ) |
| 8 |
1 5 6 7
|
termcterm |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ TermCat ) → 𝐶 ∈ ( TermO ‘ 𝐸 ) ) |
| 9 |
|
setc1oterm |
⊢ ( SetCat ‘ 1o ) ∈ TermCat |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( SetCat ‘ 1o ) ∈ TermCat ) |
| 11 |
4 10
|
elind |
⊢ ( 𝜑 → ( SetCat ‘ 1o ) ∈ ( 𝑈 ∩ TermCat ) ) |
| 12 |
11
|
ne0d |
⊢ ( 𝜑 → ( 𝑈 ∩ TermCat ) ≠ ∅ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) → ( 𝑈 ∩ TermCat ) ≠ ∅ ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) → 𝐶 ∈ ( TermO ‘ 𝐸 ) ) |
| 15 |
1 13 14
|
termcterm2 |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) → 𝐶 ∈ TermCat ) |
| 16 |
8 15
|
impbida |
⊢ ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) ) |