| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcterm.e |
⊢ 𝐸 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
termcterm2. |
⊢ ( 𝜑 → ( 𝑈 ∩ TermCat ) ≠ ∅ ) |
| 3 |
|
termcterm2.t |
⊢ ( 𝜑 → 𝐶 ∈ ( TermO ‘ 𝐸 ) ) |
| 4 |
|
n0 |
⊢ ( ( 𝑈 ∩ TermCat ) ≠ ∅ ↔ ∃ 𝑑 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) |
| 5 |
2 4
|
sylib |
⊢ ( 𝜑 → ∃ 𝑑 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) |
| 7 |
6
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ TermCat ) |
| 8 |
7
|
termcthind |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ ThinCat ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐶 ∈ ( TermO ‘ 𝐸 ) ) |
| 11 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 12 |
|
termorcl |
⊢ ( 𝐶 ∈ ( TermO ‘ 𝐸 ) → 𝐸 ∈ Cat ) |
| 13 |
10 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐸 ∈ Cat ) |
| 14 |
9 11 13
|
istermoi |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) ∧ 𝐶 ∈ ( TermO ‘ 𝐸 ) ) → ( 𝐶 ∈ ( Base ‘ 𝐸 ) ∧ ∀ 𝑑 ∈ ( Base ‘ 𝐸 ) ∃! 𝑓 𝑓 ∈ ( 𝑑 ( Hom ‘ 𝐸 ) 𝐶 ) ) ) |
| 15 |
10 14
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( 𝐶 ∈ ( Base ‘ 𝐸 ) ∧ ∀ 𝑑 ∈ ( Base ‘ 𝐸 ) ∃! 𝑓 𝑓 ∈ ( 𝑑 ( Hom ‘ 𝐸 ) 𝐶 ) ) ) |
| 16 |
15
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐶 ∈ ( Base ‘ 𝐸 ) ) |
| 17 |
1 9
|
elbasfv |
⊢ ( 𝐶 ∈ ( Base ‘ 𝐸 ) → 𝑈 ∈ V ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑈 ∈ V ) |
| 19 |
6
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ 𝑈 ) |
| 20 |
7
|
termccd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ Cat ) |
| 21 |
19 20
|
elind |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ ( 𝑈 ∩ Cat ) ) |
| 22 |
1 9 18
|
catcbas |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) ) |
| 23 |
21 22
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ ( Base ‘ 𝐸 ) ) |
| 24 |
1 18 19 7
|
termcterm |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ ( TermO ‘ 𝐸 ) ) |
| 25 |
13 10 24
|
termoeu1w |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐶 ( ≃𝑐 ‘ 𝐸 ) 𝑑 ) |
| 26 |
1 9 18 16 23 25
|
thincciso4 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( 𝐶 ∈ ThinCat ↔ 𝑑 ∈ ThinCat ) ) |
| 27 |
8 26
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐶 ∈ ThinCat ) |
| 28 |
13 10 24
|
termoeu1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ) |
| 29 |
|
euex |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 32 |
|
eqid |
⊢ ( Base ‘ 𝑑 ) = ( Base ‘ 𝑑 ) |
| 33 |
|
eqid |
⊢ ( Iso ‘ 𝐸 ) = ( Iso ‘ 𝐸 ) |
| 34 |
1 9 31 32 18 16 23 33
|
catciso |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ↔ ( 𝑓 ∈ ( ( 𝐶 Full 𝑑 ) ∩ ( 𝐶 Faith 𝑑 ) ) ∧ ( 1st ‘ 𝑓 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝑑 ) ) ) ) |
| 35 |
34
|
simplbda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) ∧ 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ) → ( 1st ‘ 𝑓 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝑑 ) ) |
| 36 |
|
fvex |
⊢ ( Base ‘ 𝐶 ) ∈ V |
| 37 |
36
|
f1oen |
⊢ ( ( 1st ‘ 𝑓 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝑑 ) → ( Base ‘ 𝐶 ) ≈ ( Base ‘ 𝑑 ) ) |
| 38 |
35 37
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) ∧ 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ) → ( Base ‘ 𝐶 ) ≈ ( Base ‘ 𝑑 ) ) |
| 39 |
30 38
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( Base ‘ 𝐶 ) ≈ ( Base ‘ 𝑑 ) ) |
| 40 |
32
|
istermc3 |
⊢ ( 𝑑 ∈ TermCat ↔ ( 𝑑 ∈ ThinCat ∧ ( Base ‘ 𝑑 ) ≈ 1o ) ) |
| 41 |
7 40
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( 𝑑 ∈ ThinCat ∧ ( Base ‘ 𝑑 ) ≈ 1o ) ) |
| 42 |
41
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( Base ‘ 𝑑 ) ≈ 1o ) |
| 43 |
|
entr |
⊢ ( ( ( Base ‘ 𝐶 ) ≈ ( Base ‘ 𝑑 ) ∧ ( Base ‘ 𝑑 ) ≈ 1o ) → ( Base ‘ 𝐶 ) ≈ 1o ) |
| 44 |
39 42 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( Base ‘ 𝐶 ) ≈ 1o ) |
| 45 |
31
|
istermc3 |
⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ( Base ‘ 𝐶 ) ≈ 1o ) ) |
| 46 |
27 44 45
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐶 ∈ TermCat ) |
| 47 |
5 46
|
exlimddv |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |