| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobeqterm.a |
|- A = ( Base ` D ) |
| 2 |
|
uobeqterm.b |
|- B = ( Base ` E ) |
| 3 |
|
uobeqterm.x |
|- ( ph -> X e. A ) |
| 4 |
|
uobeqterm.y |
|- ( ph -> Y e. B ) |
| 5 |
|
uobeqterm.f |
|- ( ph -> F e. ( C Func D ) ) |
| 6 |
|
uobeqterm.g |
|- ( ph -> G e. ( C Func E ) ) |
| 7 |
|
uobeqterm.d |
|- ( ph -> D e. TermCat ) |
| 8 |
|
uobeqterm.e |
|- ( ph -> E e. TermCat ) |
| 9 |
|
eqid |
|- ( CatCat ` { D , E } ) = ( CatCat ` { D , E } ) |
| 10 |
|
eqid |
|- ( Base ` ( CatCat ` { D , E } ) ) = ( Base ` ( CatCat ` { D , E } ) ) |
| 11 |
|
prid1g |
|- ( D e. TermCat -> D e. { D , E } ) |
| 12 |
7 11
|
syl |
|- ( ph -> D e. { D , E } ) |
| 13 |
7
|
termccd |
|- ( ph -> D e. Cat ) |
| 14 |
12 13
|
elind |
|- ( ph -> D e. ( { D , E } i^i Cat ) ) |
| 15 |
|
prex |
|- { D , E } e. _V |
| 16 |
15
|
a1i |
|- ( ph -> { D , E } e. _V ) |
| 17 |
9 10 16
|
catcbas |
|- ( ph -> ( Base ` ( CatCat ` { D , E } ) ) = ( { D , E } i^i Cat ) ) |
| 18 |
14 17
|
eleqtrrd |
|- ( ph -> D e. ( Base ` ( CatCat ` { D , E } ) ) ) |
| 19 |
|
prid2g |
|- ( E e. TermCat -> E e. { D , E } ) |
| 20 |
8 19
|
syl |
|- ( ph -> E e. { D , E } ) |
| 21 |
8
|
termccd |
|- ( ph -> E e. Cat ) |
| 22 |
20 21
|
elind |
|- ( ph -> E e. ( { D , E } i^i Cat ) ) |
| 23 |
22 17
|
eleqtrrd |
|- ( ph -> E e. ( Base ` ( CatCat ` { D , E } ) ) ) |
| 24 |
9 10 18 23 7
|
termcciso |
|- ( ph -> ( E e. TermCat <-> D ( ~=c ` ( CatCat ` { D , E } ) ) E ) ) |
| 25 |
8 24
|
mpbid |
|- ( ph -> D ( ~=c ` ( CatCat ` { D , E } ) ) E ) |
| 26 |
|
eqid |
|- ( Iso ` ( CatCat ` { D , E } ) ) = ( Iso ` ( CatCat ` { D , E } ) ) |
| 27 |
9
|
catccat |
|- ( { D , E } e. _V -> ( CatCat ` { D , E } ) e. Cat ) |
| 28 |
16 27
|
syl |
|- ( ph -> ( CatCat ` { D , E } ) e. Cat ) |
| 29 |
26 10 28 18 23
|
cic |
|- ( ph -> ( D ( ~=c ` ( CatCat ` { D , E } ) ) E <-> E. k k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) ) |
| 30 |
25 29
|
mpbid |
|- ( ph -> E. k k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) |
| 31 |
3
|
adantr |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> X e. A ) |
| 32 |
5
|
adantr |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> F e. ( C Func D ) ) |
| 33 |
|
fullfunc |
|- ( D Full E ) C_ ( D Func E ) |
| 34 |
|
simpr |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) |
| 35 |
9 1 2 26 34
|
catcisoi |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( k e. ( ( D Full E ) i^i ( D Faith E ) ) /\ ( 1st ` k ) : A -1-1-onto-> B ) ) |
| 36 |
35
|
simpld |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> k e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 37 |
36
|
elin1d |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> k e. ( D Full E ) ) |
| 38 |
33 37
|
sselid |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> k e. ( D Func E ) ) |
| 39 |
6
|
adantr |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> G e. ( C Func E ) ) |
| 40 |
8
|
adantr |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> E e. TermCat ) |
| 41 |
32 38 39 40
|
cofuterm |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( k o.func F ) = G ) |
| 42 |
38
|
func1st2nd |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( 1st ` k ) ( D Func E ) ( 2nd ` k ) ) |
| 43 |
1 2 42
|
funcf1 |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( 1st ` k ) : A --> B ) |
| 44 |
43 31
|
ffvelcdmd |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( ( 1st ` k ) ` X ) e. B ) |
| 45 |
4
|
adantr |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> Y e. B ) |
| 46 |
40 2 44 45
|
termcbasmo |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( ( 1st ` k ) ` X ) = Y ) |
| 47 |
1 31 32 41 46 9 26 34
|
uobeq3 |
|- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |
| 48 |
30 47
|
exlimddv |
|- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |