| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofuterm.f |
|- ( ph -> F e. ( C Func D ) ) |
| 2 |
|
cofuterm.g |
|- ( ph -> G e. ( D Func E ) ) |
| 3 |
|
cofuterm.k |
|- ( ph -> K e. ( C Func E ) ) |
| 4 |
|
cofuterm.e |
|- ( ph -> E e. TermCat ) |
| 5 |
|
eqid |
|- ( C FuncCat E ) = ( C FuncCat E ) |
| 6 |
1
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 7 |
6
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
| 8 |
5 7 4
|
fucterm |
|- ( ph -> ( C FuncCat E ) e. TermCat ) |
| 9 |
5
|
fucbas |
|- ( C Func E ) = ( Base ` ( C FuncCat E ) ) |
| 10 |
1 2
|
cofucl |
|- ( ph -> ( G o.func F ) e. ( C Func E ) ) |
| 11 |
8 9 10 3
|
termcbasmo |
|- ( ph -> ( G o.func F ) = K ) |