Metamath Proof Explorer


Theorem cofuterm

Description: Post-compose with a functor to a terminal category. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses cofuterm.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
cofuterm.g ( 𝜑𝐺 ∈ ( 𝐷 Func 𝐸 ) )
cofuterm.k ( 𝜑𝐾 ∈ ( 𝐶 Func 𝐸 ) )
cofuterm.e ( 𝜑𝐸 ∈ TermCat )
Assertion cofuterm ( 𝜑 → ( 𝐺func 𝐹 ) = 𝐾 )

Proof

Step Hyp Ref Expression
1 cofuterm.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
2 cofuterm.g ( 𝜑𝐺 ∈ ( 𝐷 Func 𝐸 ) )
3 cofuterm.k ( 𝜑𝐾 ∈ ( 𝐶 Func 𝐸 ) )
4 cofuterm.e ( 𝜑𝐸 ∈ TermCat )
5 eqid ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 )
6 1 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
7 6 funcrcl2 ( 𝜑𝐶 ∈ Cat )
8 5 7 4 fucterm ( 𝜑 → ( 𝐶 FuncCat 𝐸 ) ∈ TermCat )
9 5 fucbas ( 𝐶 Func 𝐸 ) = ( Base ‘ ( 𝐶 FuncCat 𝐸 ) )
10 1 2 cofucl ( 𝜑 → ( 𝐺func 𝐹 ) ∈ ( 𝐶 Func 𝐸 ) )
11 8 9 10 3 termcbasmo ( 𝜑 → ( 𝐺func 𝐹 ) = 𝐾 )