| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofuterm.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 2 |
|
cofuterm.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 Func 𝐸 ) ) |
| 3 |
|
cofuterm.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐶 Func 𝐸 ) ) |
| 4 |
|
cofuterm.e |
⊢ ( 𝜑 → 𝐸 ∈ TermCat ) |
| 5 |
|
eqid |
⊢ ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 ) |
| 6 |
1
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 7 |
6
|
funcrcl2 |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 8 |
5 7 4
|
fucterm |
⊢ ( 𝜑 → ( 𝐶 FuncCat 𝐸 ) ∈ TermCat ) |
| 9 |
5
|
fucbas |
⊢ ( 𝐶 Func 𝐸 ) = ( Base ‘ ( 𝐶 FuncCat 𝐸 ) ) |
| 10 |
1 2
|
cofucl |
⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) ∈ ( 𝐶 Func 𝐸 ) ) |
| 11 |
8 9 10 3
|
termcbasmo |
⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) = 𝐾 ) |