Metamath Proof Explorer


Theorem fucterm

Description: The category of functors to a terminal category is terminal. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses funcsn.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
fucterm.c ( 𝜑𝐶 ∈ Cat )
fucterm.d ( 𝜑𝐷 ∈ TermCat )
Assertion fucterm ( 𝜑𝑄 ∈ TermCat )

Proof

Step Hyp Ref Expression
1 funcsn.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
2 fucterm.c ( 𝜑𝐶 ∈ Cat )
3 fucterm.d ( 𝜑𝐷 ∈ TermCat )
4 opex ⟨ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) ⟩ ∈ V
5 4 a1i ( 𝜑 → ⟨ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) ⟩ ∈ V )
6 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
7 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
8 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
9 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
10 eqid ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) )
11 eqid ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) )
12 2 3 6 7 8 9 10 11 functermc2 ( 𝜑 → ( 𝐶 Func 𝐷 ) = { ⟨ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) ⟩ } )
13 3 termcthind ( 𝜑𝐷 ∈ ThinCat )
14 1 5 12 13 funcsn ( 𝜑𝑄 ∈ TermCat )