Metamath Proof Explorer


Theorem cofuterm

Description: Post-compose with a functor to a terminal category. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses cofuterm.f φ F C Func D
cofuterm.g φ G D Func E
cofuterm.k φ K C Func E
cofuterm.e No typesetting found for |- ( ph -> E e. TermCat ) with typecode |-
Assertion cofuterm φ G func F = K

Proof

Step Hyp Ref Expression
1 cofuterm.f φ F C Func D
2 cofuterm.g φ G D Func E
3 cofuterm.k φ K C Func E
4 cofuterm.e Could not format ( ph -> E e. TermCat ) : No typesetting found for |- ( ph -> E e. TermCat ) with typecode |-
5 eqid C FuncCat E = C FuncCat E
6 1 func1st2nd φ 1 st F C Func D 2 nd F
7 6 funcrcl2 φ C Cat
8 5 7 4 fucterm Could not format ( ph -> ( C FuncCat E ) e. TermCat ) : No typesetting found for |- ( ph -> ( C FuncCat E ) e. TermCat ) with typecode |-
9 5 fucbas C Func E = Base C FuncCat E
10 1 2 cofucl φ G func F C Func E
11 8 9 10 3 termcbasmo φ G func F = K