Metamath Proof Explorer


Theorem uobeqterm

Description: Universal objects and terminal categories. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses uobeqterm.a A = Base D
uobeqterm.b B = Base E
uobeqterm.x φ X A
uobeqterm.y φ Y B
uobeqterm.f φ F C Func D
uobeqterm.g φ G C Func E
uobeqterm.d No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
uobeqterm.e No typesetting found for |- ( ph -> E e. TermCat ) with typecode |-
Assertion uobeqterm Could not format assertion : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uobeqterm.a A = Base D
2 uobeqterm.b B = Base E
3 uobeqterm.x φ X A
4 uobeqterm.y φ Y B
5 uobeqterm.f φ F C Func D
6 uobeqterm.g φ G C Func E
7 uobeqterm.d Could not format ( ph -> D e. TermCat ) : No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
8 uobeqterm.e Could not format ( ph -> E e. TermCat ) : No typesetting found for |- ( ph -> E e. TermCat ) with typecode |-
9 eqid CatCat D E = CatCat D E
10 eqid Base CatCat D E = Base CatCat D E
11 prid1g Could not format ( D e. TermCat -> D e. { D , E } ) : No typesetting found for |- ( D e. TermCat -> D e. { D , E } ) with typecode |-
12 7 11 syl φ D D E
13 7 termccd φ D Cat
14 12 13 elind φ D D E Cat
15 prex D E V
16 15 a1i φ D E V
17 9 10 16 catcbas φ Base CatCat D E = D E Cat
18 14 17 eleqtrrd φ D Base CatCat D E
19 prid2g Could not format ( E e. TermCat -> E e. { D , E } ) : No typesetting found for |- ( E e. TermCat -> E e. { D , E } ) with typecode |-
20 8 19 syl φ E D E
21 8 termccd φ E Cat
22 20 21 elind φ E D E Cat
23 22 17 eleqtrrd φ E Base CatCat D E
24 9 10 18 23 7 termcciso Could not format ( ph -> ( E e. TermCat <-> D ( ~=c ` ( CatCat ` { D , E } ) ) E ) ) : No typesetting found for |- ( ph -> ( E e. TermCat <-> D ( ~=c ` ( CatCat ` { D , E } ) ) E ) ) with typecode |-
25 8 24 mpbid φ D 𝑐 CatCat D E E
26 eqid Iso CatCat D E = Iso CatCat D E
27 9 catccat D E V CatCat D E Cat
28 16 27 syl φ CatCat D E Cat
29 26 10 28 18 23 cic φ D 𝑐 CatCat D E E k k D Iso CatCat D E E
30 25 29 mpbid φ k k D Iso CatCat D E E
31 3 adantr φ k D Iso CatCat D E E X A
32 5 adantr φ k D Iso CatCat D E E F C Func D
33 fullfunc D Full E D Func E
34 simpr φ k D Iso CatCat D E E k D Iso CatCat D E E
35 9 1 2 26 34 catcisoi φ k D Iso CatCat D E E k D Full E D Faith E 1 st k : A 1-1 onto B
36 35 simpld φ k D Iso CatCat D E E k D Full E D Faith E
37 36 elin1d φ k D Iso CatCat D E E k D Full E
38 33 37 sselid φ k D Iso CatCat D E E k D Func E
39 6 adantr φ k D Iso CatCat D E E G C Func E
40 8 adantr Could not format ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> E e. TermCat ) : No typesetting found for |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> E e. TermCat ) with typecode |-
41 32 38 39 40 cofuterm φ k D Iso CatCat D E E k func F = G
42 38 func1st2nd φ k D Iso CatCat D E E 1 st k D Func E 2 nd k
43 1 2 42 funcf1 φ k D Iso CatCat D E E 1 st k : A B
44 43 31 ffvelcdmd φ k D Iso CatCat D E E 1 st k X B
45 4 adantr φ k D Iso CatCat D E E Y B
46 40 2 44 45 termcbasmo φ k D Iso CatCat D E E 1 st k X = Y
47 1 31 32 41 46 9 26 34 uobeq3 Could not format ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) : No typesetting found for |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-
48 30 47 exlimddv Could not format ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-