| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinito4.1 |
⊢ ( 𝜑 → 1 ∈ TermCat ) |
| 2 |
|
isinito4.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 1 ) ) |
| 3 |
|
isinito4a.f |
⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ 𝑋 ) |
| 4 |
|
initorcl |
⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 5 |
4
|
anim2i |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝜑 ∧ 𝐶 ∈ Cat ) ) |
| 6 |
|
uobrcl |
⊢ ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) → ( 𝐶 ∈ Cat ∧ 1 ∈ Cat ) ) |
| 7 |
6
|
simpld |
⊢ ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) → 𝐶 ∈ Cat ) |
| 8 |
7
|
anim2i |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) → ( 𝜑 ∧ 𝐶 ∈ Cat ) ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 1 ∈ TermCat ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝑋 ∈ ( Base ‘ 1 ) ) |
| 11 |
|
eqid |
⊢ ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 ) |
| 12 |
9
|
termccd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 1 ∈ Cat ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 1 ) = ( Base ‘ 1 ) |
| 15 |
11 12 13 14 10 3
|
diag1cl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝐹 ∈ ( 𝐶 Func 1 ) ) |
| 16 |
9 10 15
|
isinito4 |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) ) |
| 17 |
5 8 16
|
pm5.21nd |
⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) ) |