| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinito4.1 |
|- ( ph -> .1. e. TermCat ) |
| 2 |
|
isinito4.x |
|- ( ph -> X e. ( Base ` .1. ) ) |
| 3 |
|
isinito4a.f |
|- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` X ) |
| 4 |
|
initorcl |
|- ( I e. ( InitO ` C ) -> C e. Cat ) |
| 5 |
4
|
anim2i |
|- ( ( ph /\ I e. ( InitO ` C ) ) -> ( ph /\ C e. Cat ) ) |
| 6 |
|
uobrcl |
|- ( I e. dom ( F ( C UP .1. ) X ) -> ( C e. Cat /\ .1. e. Cat ) ) |
| 7 |
6
|
simpld |
|- ( I e. dom ( F ( C UP .1. ) X ) -> C e. Cat ) |
| 8 |
7
|
anim2i |
|- ( ( ph /\ I e. dom ( F ( C UP .1. ) X ) ) -> ( ph /\ C e. Cat ) ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ C e. Cat ) -> .1. e. TermCat ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ C e. Cat ) -> X e. ( Base ` .1. ) ) |
| 11 |
|
eqid |
|- ( .1. DiagFunc C ) = ( .1. DiagFunc C ) |
| 12 |
9
|
termccd |
|- ( ( ph /\ C e. Cat ) -> .1. e. Cat ) |
| 13 |
|
simpr |
|- ( ( ph /\ C e. Cat ) -> C e. Cat ) |
| 14 |
|
eqid |
|- ( Base ` .1. ) = ( Base ` .1. ) |
| 15 |
11 12 13 14 10 3
|
diag1cl |
|- ( ( ph /\ C e. Cat ) -> F e. ( C Func .1. ) ) |
| 16 |
9 10 15
|
isinito4 |
|- ( ( ph /\ C e. Cat ) -> ( I e. ( InitO ` C ) <-> I e. dom ( F ( C UP .1. ) X ) ) ) |
| 17 |
5 8 16
|
pm5.21nd |
|- ( ph -> ( I e. ( InitO ` C ) <-> I e. dom ( F ( C UP .1. ) X ) ) ) |