| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termorcl |
⊢ ( 𝑥 ∈ ( TermO ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 2 |
|
vex |
⊢ 𝑥 ∈ V |
| 3 |
2
|
eldm |
⊢ ( 𝑥 ∈ dom ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) ↔ ∃ 𝑦 𝑥 ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) 𝑦 ) |
| 4 |
|
df-br |
⊢ ( 𝑥 ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) ) |
| 5 |
|
lmdrcl |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) → 〈 ∅ , ∅ 〉 ∈ ( ∅ Func 𝐶 ) ) |
| 6 |
4 5
|
sylbi |
⊢ ( 𝑥 ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) 𝑦 → 〈 ∅ , ∅ 〉 ∈ ( ∅ Func 𝐶 ) ) |
| 7 |
6
|
func1st2nd |
⊢ ( 𝑥 ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) 𝑦 → ( 1st ‘ 〈 ∅ , ∅ 〉 ) ( ∅ Func 𝐶 ) ( 2nd ‘ 〈 ∅ , ∅ 〉 ) ) |
| 8 |
7
|
funcrcl3 |
⊢ ( 𝑥 ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) 𝑦 → 𝐶 ∈ Cat ) |
| 9 |
8
|
exlimiv |
⊢ ( ∃ 𝑦 𝑥 ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) 𝑦 → 𝐶 ∈ Cat ) |
| 10 |
3 9
|
sylbi |
⊢ ( 𝑥 ∈ dom ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) → 𝐶 ∈ Cat ) |
| 11 |
|
initocmd |
⊢ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) = dom ( ∅ ( ( oppCat ‘ 𝐶 ) Colimit ∅ ) ∅ ) |
| 12 |
|
oppctermo |
⊢ ( 𝑥 ∈ ( TermO ‘ 𝐶 ) ↔ 𝑥 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 13 |
12
|
eqriv |
⊢ ( TermO ‘ 𝐶 ) = ( InitO ‘ ( oppCat ‘ 𝐶 ) ) |
| 14 |
13
|
a1i |
⊢ ( 𝐶 ∈ Cat → ( TermO ‘ 𝐶 ) = ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 15 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
| 16 |
15
|
2oppchomf |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 17 |
16
|
a1i |
⊢ ( 𝐶 ∈ Cat → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
| 18 |
15
|
2oppccomf |
⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 19 |
18
|
a1i |
⊢ ( 𝐶 ∈ Cat → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
| 20 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) = ( 𝑥 ( Hom ‘ ( oppCat ‘ ∅ ) ) 𝑦 ) |
| 21 |
|
eqid |
⊢ ( Hom ‘ ∅ ) = ( Hom ‘ ∅ ) |
| 22 |
|
eqid |
⊢ ( Hom ‘ ( oppCat ‘ ∅ ) ) = ( Hom ‘ ( oppCat ‘ ∅ ) ) |
| 23 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
| 24 |
23
|
a1i |
⊢ ( 𝐶 ∈ Cat → ∅ = ( Base ‘ ∅ ) ) |
| 25 |
|
eqid |
⊢ ( oppCat ‘ ∅ ) = ( oppCat ‘ ∅ ) |
| 26 |
25 23
|
oppcbas |
⊢ ∅ = ( Base ‘ ( oppCat ‘ ∅ ) ) |
| 27 |
26
|
a1i |
⊢ ( 𝐶 ∈ Cat → ∅ = ( Base ‘ ( oppCat ‘ ∅ ) ) ) |
| 28 |
21 22 24 27
|
homfeq |
⊢ ( 𝐶 ∈ Cat → ( ( Homf ‘ ∅ ) = ( Homf ‘ ( oppCat ‘ ∅ ) ) ↔ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) = ( 𝑥 ( Hom ‘ ( oppCat ‘ ∅ ) ) 𝑦 ) ) ) |
| 29 |
20 28
|
mpbiri |
⊢ ( 𝐶 ∈ Cat → ( Homf ‘ ∅ ) = ( Homf ‘ ( oppCat ‘ ∅ ) ) ) |
| 30 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ ∅ ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ∅ ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ ∅ ) ) 𝑧 ) 𝑓 ) |
| 31 |
|
eqid |
⊢ ( comp ‘ ∅ ) = ( comp ‘ ∅ ) |
| 32 |
|
eqid |
⊢ ( comp ‘ ( oppCat ‘ ∅ ) ) = ( comp ‘ ( oppCat ‘ ∅ ) ) |
| 33 |
31 32 21 24 27 29
|
comfeq |
⊢ ( 𝐶 ∈ Cat → ( ( compf ‘ ∅ ) = ( compf ‘ ( oppCat ‘ ∅ ) ) ↔ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ ∅ ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ∅ ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ ∅ ) ) 𝑧 ) 𝑓 ) ) ) |
| 34 |
30 33
|
mpbiri |
⊢ ( 𝐶 ∈ Cat → ( compf ‘ ∅ ) = ( compf ‘ ( oppCat ‘ ∅ ) ) ) |
| 35 |
|
elex |
⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ V ) |
| 36 |
|
fvexd |
⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ ( oppCat ‘ 𝐶 ) ) ∈ V ) |
| 37 |
|
0ex |
⊢ ∅ ∈ V |
| 38 |
37
|
a1i |
⊢ ( 𝐶 ∈ Cat → ∅ ∈ V ) |
| 39 |
|
fvexd |
⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ ∅ ) ∈ V ) |
| 40 |
17 19 29 34 35 36 38 39
|
lmdpropd |
⊢ ( 𝐶 ∈ Cat → ( 𝐶 Limit ∅ ) = ( ( oppCat ‘ ( oppCat ‘ 𝐶 ) ) Limit ( oppCat ‘ ∅ ) ) ) |
| 41 |
|
eqidd |
⊢ ( 𝐶 ∈ Cat → ∅ = ∅ ) |
| 42 |
|
0cat |
⊢ ∅ ∈ Cat |
| 43 |
42
|
a1i |
⊢ ( 𝐶 ∈ Cat → ∅ ∈ Cat ) |
| 44 |
43 24 43
|
0funcg2 |
⊢ ( 𝐶 ∈ Cat → ( ∅ ( ∅ Func ∅ ) ∅ ↔ ( ∅ = ∅ ∧ ∅ = ∅ ) ) ) |
| 45 |
41 41 44
|
mpbir2and |
⊢ ( 𝐶 ∈ Cat → ∅ ( ∅ Func ∅ ) ∅ ) |
| 46 |
|
oppfval |
⊢ ( ∅ ( ∅ Func ∅ ) ∅ → ( ∅ oppFunc ∅ ) = 〈 ∅ , tpos ∅ 〉 ) |
| 47 |
45 46
|
syl |
⊢ ( 𝐶 ∈ Cat → ( ∅ oppFunc ∅ ) = 〈 ∅ , tpos ∅ 〉 ) |
| 48 |
|
tpos0 |
⊢ tpos ∅ = ∅ |
| 49 |
48
|
opeq2i |
⊢ 〈 ∅ , tpos ∅ 〉 = 〈 ∅ , ∅ 〉 |
| 50 |
47 49
|
eqtr2di |
⊢ ( 𝐶 ∈ Cat → 〈 ∅ , ∅ 〉 = ( ∅ oppFunc ∅ ) ) |
| 51 |
40 50
|
fveq12d |
⊢ ( 𝐶 ∈ Cat → ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) = ( ( ( oppCat ‘ ( oppCat ‘ 𝐶 ) ) Limit ( oppCat ‘ ∅ ) ) ‘ ( ∅ oppFunc ∅ ) ) ) |
| 52 |
|
df-ov |
⊢ ( ∅ ( ( oppCat ‘ 𝐶 ) Colimit ∅ ) ∅ ) = ( ( ( oppCat ‘ 𝐶 ) Colimit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) |
| 53 |
|
eqid |
⊢ ( oppCat ‘ ( oppCat ‘ 𝐶 ) ) = ( oppCat ‘ ( oppCat ‘ 𝐶 ) ) |
| 54 |
|
df-ov |
⊢ ( ∅ oppFunc ∅ ) = ( oppFunc ‘ 〈 ∅ , ∅ 〉 ) |
| 55 |
|
fvexd |
⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ V ) |
| 56 |
53 25 54 55 38
|
cmddu |
⊢ ( 𝐶 ∈ Cat → ( ( ( oppCat ‘ 𝐶 ) Colimit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) = ( ( ( oppCat ‘ ( oppCat ‘ 𝐶 ) ) Limit ( oppCat ‘ ∅ ) ) ‘ ( ∅ oppFunc ∅ ) ) ) |
| 57 |
52 56
|
eqtrid |
⊢ ( 𝐶 ∈ Cat → ( ∅ ( ( oppCat ‘ 𝐶 ) Colimit ∅ ) ∅ ) = ( ( ( oppCat ‘ ( oppCat ‘ 𝐶 ) ) Limit ( oppCat ‘ ∅ ) ) ‘ ( ∅ oppFunc ∅ ) ) ) |
| 58 |
51 57
|
eqtr4d |
⊢ ( 𝐶 ∈ Cat → ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) = ( ∅ ( ( oppCat ‘ 𝐶 ) Colimit ∅ ) ∅ ) ) |
| 59 |
58
|
dmeqd |
⊢ ( 𝐶 ∈ Cat → dom ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) = dom ( ∅ ( ( oppCat ‘ 𝐶 ) Colimit ∅ ) ∅ ) ) |
| 60 |
11 14 59
|
3eqtr4a |
⊢ ( 𝐶 ∈ Cat → ( TermO ‘ 𝐶 ) = dom ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) ) |
| 61 |
60
|
eleq2d |
⊢ ( 𝐶 ∈ Cat → ( 𝑥 ∈ ( TermO ‘ 𝐶 ) ↔ 𝑥 ∈ dom ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) ) ) |
| 62 |
1 10 61
|
pm5.21nii |
⊢ ( 𝑥 ∈ ( TermO ‘ 𝐶 ) ↔ 𝑥 ∈ dom ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) ) |
| 63 |
62
|
eqriv |
⊢ ( TermO ‘ 𝐶 ) = dom ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) |
| 64 |
|
df-ov |
⊢ ( ∅ ( 𝐶 Limit ∅ ) ∅ ) = ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) |
| 65 |
64
|
dmeqi |
⊢ dom ( ∅ ( 𝐶 Limit ∅ ) ∅ ) = dom ( ( 𝐶 Limit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) |
| 66 |
63 65
|
eqtr4i |
⊢ ( TermO ‘ 𝐶 ) = dom ( ∅ ( 𝐶 Limit ∅ ) ∅ ) |