| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmdran.1 |
⊢ ( 𝜑 → 1 ∈ TermCat ) |
| 2 |
|
lmdran.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 Func 1 ) ) |
| 3 |
|
lmdran.l |
⊢ 𝐿 = ( 𝐶 Δfunc 1 ) |
| 4 |
|
lmdran.y |
⊢ ( 𝜑 → 𝑌 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) |
| 5 |
|
lmdfval2 |
⊢ ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) = ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) |
| 6 |
5
|
breqi |
⊢ ( 𝑋 ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) 𝑀 ↔ 𝑋 ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝑋 ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) |
| 8 |
7
|
up1st2nd |
⊢ ( ( 𝜑 ∧ 𝑋 ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝑋 ( 〈 ( 1st ‘ ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ) , ( 2nd ‘ ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ) 〉 ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) |
| 9 |
|
eqid |
⊢ ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) = ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 10 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
| 11 |
10
|
fucbas |
⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 12 |
8 9 11
|
oppcuprcl3 |
⊢ ( ( 𝜑 ∧ 𝑋 ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 13 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 15 |
8 13 14
|
oppcuprcl4 |
⊢ ( ( 𝜑 ∧ 𝑋 ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 16 |
12 15
|
jca |
⊢ ( ( 𝜑 ∧ 𝑋 ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) |
| 18 |
17
|
up1st2nd |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝑌 ( 〈 ( 1st ‘ ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ) , ( 2nd ‘ ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ) 〉 ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) |
| 19 |
18 9 11
|
oppcuprcl3 |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 20 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝑌 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) |
| 21 |
|
eqid |
⊢ ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) = ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) |
| 22 |
|
eqid |
⊢ ( 1 FuncCat 𝐶 ) = ( 1 FuncCat 𝐶 ) |
| 23 |
22
|
fucbas |
⊢ ( 1 Func 𝐶 ) = ( Base ‘ ( 1 FuncCat 𝐶 ) ) |
| 24 |
18 21 23
|
oppcuprcl4 |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝑌 ∈ ( 1 Func 𝐶 ) ) |
| 25 |
|
relfunc |
⊢ Rel ( 1 Func 𝐶 ) |
| 26 |
24 25
|
oppfrcllem |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝑌 ≠ ∅ ) |
| 27 |
20 26
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ≠ ∅ ) |
| 28 |
|
fvfundmfvn0 |
⊢ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ≠ ∅ → ( 𝑋 ∈ dom ( 1st ‘ 𝐿 ) ∧ Fun ( ( 1st ‘ 𝐿 ) ↾ { 𝑋 } ) ) ) |
| 29 |
28
|
simpld |
⊢ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ dom ( 1st ‘ 𝐿 ) ) |
| 30 |
27 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝑋 ∈ dom ( 1st ‘ 𝐿 ) ) |
| 31 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → 1 ∈ TermCat ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 33 |
32
|
func1st2nd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → ( 1st ‘ 𝐹 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐹 ) ) |
| 34 |
33
|
funcrcl3 |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 35 |
14 31 34 3
|
diag1f1o |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 1 Func 𝐶 ) ) |
| 36 |
|
f1of |
⊢ ( ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 1 Func 𝐶 ) → ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) ⟶ ( 1 Func 𝐶 ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) ⟶ ( 1 Func 𝐶 ) ) |
| 38 |
37
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → dom ( 1st ‘ 𝐿 ) = ( Base ‘ 𝐶 ) ) |
| 39 |
19 38
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → dom ( 1st ‘ 𝐿 ) = ( Base ‘ 𝐶 ) ) |
| 40 |
30 39
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 41 |
19 40
|
jca |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) → ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) |
| 42 |
13 14
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
| 43 |
21 23
|
oppcbas |
⊢ ( 1 Func 𝐶 ) = ( Base ‘ ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) ) |
| 44 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑌 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) |
| 45 |
34
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
| 46 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 1 ∈ TermCat ) |
| 47 |
46
|
termccd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 1 ∈ Cat ) |
| 48 |
3 45 47 22
|
diagcl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐿 ∈ ( 𝐶 Func ( 1 FuncCat 𝐶 ) ) ) |
| 49 |
48
|
oppf1 |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) = ( 1st ‘ 𝐿 ) ) |
| 50 |
49
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑋 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) |
| 51 |
44 50
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑌 = ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑋 ) ) |
| 52 |
|
eqid |
⊢ ( 𝐶 Δfunc 𝐷 ) = ( 𝐶 Δfunc 𝐷 ) |
| 53 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐺 ∈ ( 𝐷 Func 1 ) ) |
| 54 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) = ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) |
| 55 |
3 52 53 45 54
|
prcofdiag |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ∘func 𝐿 ) = ( 𝐶 Δfunc 𝐷 ) ) |
| 56 |
22 45 10 53
|
prcoffunca |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ∈ ( ( 1 FuncCat 𝐶 ) Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 57 |
55 48 56
|
cofuoppf |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ∘func ( oppFunc ‘ 𝐿 ) ) = ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ) |
| 58 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 59 |
21 9 56
|
oppfoppc2 |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ∈ ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) Func ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) ) |
| 60 |
45 46 22 3
|
diagffth |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐿 ∈ ( ( 𝐶 Full ( 1 FuncCat 𝐶 ) ) ∩ ( 𝐶 Faith ( 1 FuncCat 𝐶 ) ) ) ) |
| 61 |
13 21 60
|
ffthoppf |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( oppFunc ‘ 𝐿 ) ∈ ( ( ( oppCat ‘ 𝐶 ) Full ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) ) ∩ ( ( oppCat ‘ 𝐶 ) Faith ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) ) ) ) |
| 62 |
35
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 1 Func 𝐶 ) ) |
| 63 |
49
|
f1oeq1d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 1 Func 𝐶 ) ↔ ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 1 Func 𝐶 ) ) ) |
| 64 |
62 63
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 1 Func 𝐶 ) ) |
| 65 |
|
f1ofo |
⊢ ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 1 Func 𝐶 ) → ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) : ( Base ‘ 𝐶 ) –onto→ ( 1 Func 𝐶 ) ) |
| 66 |
64 65
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) : ( Base ‘ 𝐶 ) –onto→ ( 1 Func 𝐶 ) ) |
| 67 |
42 43 51 57 58 59 61 66
|
uptr2a |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑋 ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ↔ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) ) |
| 68 |
16 41 67
|
bibiad |
⊢ ( 𝜑 → ( 𝑋 ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ↔ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) ) |
| 69 |
|
eqid |
⊢ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) = ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) |
| 70 |
21 9 69
|
ranval3 |
⊢ ( 𝐺 ∈ ( 𝐷 Func 1 ) → ( 𝐺 ( 〈 𝐷 , 1 〉 Ran 𝐶 ) 𝐹 ) = ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) ) |
| 71 |
2 70
|
syl |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝐷 , 1 〉 Ran 𝐶 ) 𝐹 ) = ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) ) |
| 72 |
71
|
breqd |
⊢ ( 𝜑 → ( 𝑌 ( 𝐺 ( 〈 𝐷 , 1 〉 Ran 𝐶 ) 𝐹 ) 𝑀 ↔ 𝑌 ( ( oppFunc ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) ( ( oppCat ‘ ( 1 FuncCat 𝐶 ) ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ) ) |
| 73 |
68 72
|
bitr4d |
⊢ ( 𝜑 → ( 𝑋 ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑀 ↔ 𝑌 ( 𝐺 ( 〈 𝐷 , 1 〉 Ran 𝐶 ) 𝐹 ) 𝑀 ) ) |
| 74 |
6 73
|
bitrid |
⊢ ( 𝜑 → ( 𝑋 ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) 𝑀 ↔ 𝑌 ( 𝐺 ( 〈 𝐷 , 1 〉 Ran 𝐶 ) 𝐹 ) 𝑀 ) ) |