| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ranval3.o |
⊢ 𝑂 = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 2 |
|
ranval3.p |
⊢ 𝑃 = ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) |
| 3 |
|
ranval3.k |
⊢ 𝐾 = ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) |
| 4 |
|
id |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 5 |
|
opex |
⊢ 〈 𝐷 , 𝐸 〉 ∈ V |
| 6 |
5
|
a1i |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → 〈 𝐷 , 𝐸 〉 ∈ V ) |
| 7 |
4 6
|
prcofelvv |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ∈ ( V × V ) ) |
| 8 |
|
1st2nd2 |
⊢ ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ∈ ( V × V ) → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ) |
| 10 |
1 2 9 4
|
ranval2 |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) = ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( 𝑂 UP 𝑃 ) 𝑋 ) ) |
| 11 |
|
eqid |
⊢ ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 ) |
| 12 |
11
|
fucbas |
⊢ ( 𝐶 Func 𝐸 ) = ( Base ‘ ( 𝐶 FuncCat 𝐸 ) ) |
| 13 |
2 12
|
oppcbas |
⊢ ( 𝐶 Func 𝐸 ) = ( Base ‘ 𝑃 ) |
| 14 |
13
|
uprcl |
⊢ ( 𝑥 ∈ ( ( oppFunc ‘ 𝐾 ) ( 𝑂 UP 𝑃 ) 𝑋 ) → ( ( oppFunc ‘ 𝐾 ) ∈ ( 𝑂 Func 𝑃 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) ) |
| 15 |
14
|
simprd |
⊢ ( 𝑥 ∈ ( ( oppFunc ‘ 𝐾 ) ( 𝑂 UP 𝑃 ) 𝑋 ) → 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( ( oppFunc ‘ 𝐾 ) ( 𝑂 UP 𝑃 ) 𝑋 ) ) → 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) |
| 17 |
13
|
uprcl |
⊢ ( 𝑥 ∈ ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( 𝑂 UP 𝑃 ) 𝑋 ) → ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ∈ ( 𝑂 Func 𝑃 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) ) |
| 18 |
17
|
simprd |
⊢ ( 𝑥 ∈ ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( 𝑂 UP 𝑃 ) 𝑋 ) → 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( 𝑂 UP 𝑃 ) 𝑋 ) ) → 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) |
| 20 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
| 21 |
|
funcrcl |
⊢ ( 𝑋 ∈ ( 𝐶 Func 𝐸 ) → ( 𝐶 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 22 |
21
|
simprd |
⊢ ( 𝑋 ∈ ( 𝐶 Func 𝐸 ) → 𝐸 ∈ Cat ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) → 𝐸 ∈ Cat ) |
| 24 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 25 |
20 23 11 24
|
prcoffunca |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ∈ ( ( 𝐷 FuncCat 𝐸 ) Func ( 𝐶 FuncCat 𝐸 ) ) ) |
| 26 |
3
|
fveq2i |
⊢ ( oppFunc ‘ 𝐾 ) = ( oppFunc ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) |
| 27 |
|
oppfval2 |
⊢ ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ∈ ( ( 𝐷 FuncCat 𝐸 ) Func ( 𝐶 FuncCat 𝐸 ) ) → ( oppFunc ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ) |
| 28 |
26 27
|
eqtrid |
⊢ ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ∈ ( ( 𝐷 FuncCat 𝐸 ) Func ( 𝐶 FuncCat 𝐸 ) ) → ( oppFunc ‘ 𝐾 ) = 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ) |
| 29 |
25 28
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) → ( oppFunc ‘ 𝐾 ) = 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ) |
| 30 |
29
|
oveq1d |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) → ( ( oppFunc ‘ 𝐾 ) ( 𝑂 UP 𝑃 ) 𝑋 ) = ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( 𝑂 UP 𝑃 ) 𝑋 ) ) |
| 31 |
30
|
eleq2d |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) → ( 𝑥 ∈ ( ( oppFunc ‘ 𝐾 ) ( 𝑂 UP 𝑃 ) 𝑋 ) ↔ 𝑥 ∈ ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( 𝑂 UP 𝑃 ) 𝑋 ) ) ) |
| 32 |
16 19 31
|
bibiad |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝑥 ∈ ( ( oppFunc ‘ 𝐾 ) ( 𝑂 UP 𝑃 ) 𝑋 ) ↔ 𝑥 ∈ ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( 𝑂 UP 𝑃 ) 𝑋 ) ) ) |
| 33 |
32
|
eqrdv |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( ( oppFunc ‘ 𝐾 ) ( 𝑂 UP 𝑃 ) 𝑋 ) = ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , tpos ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( 𝑂 UP 𝑃 ) 𝑋 ) ) |
| 34 |
10 33
|
eqtr4d |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) = ( ( oppFunc ‘ 𝐾 ) ( 𝑂 UP 𝑃 ) 𝑋 ) ) |