Metamath Proof Explorer


Theorem lanrcl2

Description: Reverse closure for left Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypothesis lanrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴 )
Assertion lanrcl2 ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )

Proof

Step Hyp Ref Expression
1 lanrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴 )
2 df-br ( 𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴 ↔ ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) )
3 1 2 sylib ( 𝜑 → ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) )
4 lanrcl ( ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) )
5 3 4 syl ( 𝜑 → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) )
6 5 simpld ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )