Metamath Proof Explorer


Theorem prcofelvv

Description: The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses prcofelvv.f ( 𝜑𝐹𝑈 )
prcofelvv.p ( 𝜑𝑃𝑉 )
Assertion prcofelvv ( 𝜑 → ( 𝑃 −∘F 𝐹 ) ∈ ( V × V ) )

Proof

Step Hyp Ref Expression
1 prcofelvv.f ( 𝜑𝐹𝑈 )
2 prcofelvv.p ( 𝜑𝑃𝑉 )
3 eqid ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) = ( ( 1st𝑃 ) Func ( 2nd𝑃 ) )
4 eqid ( ( 1st𝑃 ) Nat ( 2nd𝑃 ) ) = ( ( 1st𝑃 ) Nat ( 2nd𝑃 ) )
5 eqidd ( 𝜑 → ( 1st𝑃 ) = ( 1st𝑃 ) )
6 eqidd ( 𝜑 → ( 2nd𝑃 ) = ( 2nd𝑃 ) )
7 3 4 1 2 5 6 prcofvalg ( 𝜑 → ( 𝑃 −∘F 𝐹 ) = ⟨ ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) , 𝑙 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑎 ∈ ( 𝑘 ( ( 1st𝑃 ) Nat ( 2nd𝑃 ) ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ )
8 ovex ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ∈ V
9 8 mptex ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) ∈ V
10 8 8 mpoex ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) , 𝑙 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑎 ∈ ( 𝑘 ( ( 1st𝑃 ) Nat ( 2nd𝑃 ) ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ∈ V
11 9 10 opelvv ⟨ ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) , 𝑙 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑎 ∈ ( 𝑘 ( ( 1st𝑃 ) Nat ( 2nd𝑃 ) ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ ∈ ( V × V )
12 7 11 eqeltrdi ( 𝜑 → ( 𝑃 −∘F 𝐹 ) ∈ ( V × V ) )