Metamath Proof Explorer


Theorem prcofelvv

Description: The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses prcofelvv.f φ F U
prcofelvv.p φ P V
Assertion prcofelvv Could not format assertion : No typesetting found for |- ( ph -> ( P -o.F F ) e. ( _V X. _V ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 prcofelvv.f φ F U
2 prcofelvv.p φ P V
3 eqid 1 st P Func 2 nd P = 1 st P Func 2 nd P
4 eqid 1 st P Nat 2 nd P = 1 st P Nat 2 nd P
5 eqidd φ 1 st P = 1 st P
6 eqidd φ 2 nd P = 2 nd P
7 3 4 1 2 5 6 prcofvalg Could not format ( ph -> ( P -o.F F ) = <. ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) , ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , l e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( a e. ( k ( ( 1st ` P ) Nat ( 2nd ` P ) ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) : No typesetting found for |- ( ph -> ( P -o.F F ) = <. ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) , ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , l e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( a e. ( k ( ( 1st ` P ) Nat ( 2nd ` P ) ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) with typecode |-
8 ovex 1 st P Func 2 nd P V
9 8 mptex k 1 st P Func 2 nd P k func F V
10 8 8 mpoex k 1 st P Func 2 nd P , l 1 st P Func 2 nd P a k 1 st P Nat 2 nd P l a 1 st F V
11 9 10 opelvv k 1 st P Func 2 nd P k func F k 1 st P Func 2 nd P , l 1 st P Func 2 nd P a k 1 st P Nat 2 nd P l a 1 st F V × V
12 7 11 eqeltrdi Could not format ( ph -> ( P -o.F F ) e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> ( P -o.F F ) e. ( _V X. _V ) ) with typecode |-