Metamath Proof Explorer


Theorem reldmprcof1

Description: The domain of the object part of the pre-composition functor is a relation. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Assertion reldmprcof1 Rel dom ( 1st ‘ ( 𝑃 −∘F 𝐹 ) )

Proof

Step Hyp Ref Expression
1 relfunc Rel ( ( 1st𝑃 ) Func ( 2nd𝑃 ) )
2 ovex ( 𝑘func 𝐹 ) ∈ V
3 eqid ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) = ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) )
4 2 3 dmmpti dom ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) = ( ( 1st𝑃 ) Func ( 2nd𝑃 ) )
5 4 releqi ( Rel dom ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) ↔ Rel ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) )
6 1 5 mpbir Rel dom ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) )
7 eqid ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) = ( ( 1st𝑃 ) Func ( 2nd𝑃 ) )
8 eqid ( ( 1st𝑃 ) Nat ( 2nd𝑃 ) ) = ( ( 1st𝑃 ) Nat ( 2nd𝑃 ) )
9 simpr ( ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → 𝐹 ∈ V )
10 simpl ( ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → 𝑃 ∈ V )
11 eqidd ( ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → ( 1st𝑃 ) = ( 1st𝑃 ) )
12 eqidd ( ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → ( 2nd𝑃 ) = ( 2nd𝑃 ) )
13 7 8 9 10 11 12 prcofvalg ( ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → ( 𝑃 −∘F 𝐹 ) = ⟨ ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) , 𝑙 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑎 ∈ ( 𝑘 ( ( 1st𝑃 ) Nat ( 2nd𝑃 ) ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ )
14 ovex ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ∈ V
15 14 mptex ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) ∈ V
16 14 14 mpoex ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) , 𝑙 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑎 ∈ ( 𝑘 ( ( 1st𝑃 ) Nat ( 2nd𝑃 ) ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ∈ V
17 15 16 op1std ( ( 𝑃 −∘F 𝐹 ) = ⟨ ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) , 𝑙 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑎 ∈ ( 𝑘 ( ( 1st𝑃 ) Nat ( 2nd𝑃 ) ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ → ( 1st ‘ ( 𝑃 −∘F 𝐹 ) ) = ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) )
18 13 17 syl ( ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → ( 1st ‘ ( 𝑃 −∘F 𝐹 ) ) = ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) )
19 18 dmeqd ( ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → dom ( 1st ‘ ( 𝑃 −∘F 𝐹 ) ) = dom ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) )
20 19 releqd ( ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → ( Rel dom ( 1st ‘ ( 𝑃 −∘F 𝐹 ) ) ↔ Rel dom ( 𝑘 ∈ ( ( 1st𝑃 ) Func ( 2nd𝑃 ) ) ↦ ( 𝑘func 𝐹 ) ) ) )
21 6 20 mpbiri ( ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → Rel dom ( 1st ‘ ( 𝑃 −∘F 𝐹 ) ) )
22 rel0 Rel ∅
23 reldmprcof Rel dom −∘F
24 23 ovprc ( ¬ ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → ( 𝑃 −∘F 𝐹 ) = ∅ )
25 24 fveq2d ( ¬ ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → ( 1st ‘ ( 𝑃 −∘F 𝐹 ) ) = ( 1st ‘ ∅ ) )
26 1st0 ( 1st ‘ ∅ ) = ∅
27 25 26 eqtrdi ( ¬ ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → ( 1st ‘ ( 𝑃 −∘F 𝐹 ) ) = ∅ )
28 27 dmeqd ( ¬ ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → dom ( 1st ‘ ( 𝑃 −∘F 𝐹 ) ) = dom ∅ )
29 dm0 dom ∅ = ∅
30 28 29 eqtrdi ( ¬ ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → dom ( 1st ‘ ( 𝑃 −∘F 𝐹 ) ) = ∅ )
31 30 releqd ( ¬ ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → ( Rel dom ( 1st ‘ ( 𝑃 −∘F 𝐹 ) ) ↔ Rel ∅ ) )
32 22 31 mpbiri ( ¬ ( 𝑃 ∈ V ∧ 𝐹 ∈ V ) → Rel dom ( 1st ‘ ( 𝑃 −∘F 𝐹 ) ) )
33 21 32 pm2.61i Rel dom ( 1st ‘ ( 𝑃 −∘F 𝐹 ) )