| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relfunc |
|- Rel ( ( 1st ` P ) Func ( 2nd ` P ) ) |
| 2 |
|
ovex |
|- ( k o.func F ) e. _V |
| 3 |
|
eqid |
|- ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) = ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) |
| 4 |
2 3
|
dmmpti |
|- dom ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) = ( ( 1st ` P ) Func ( 2nd ` P ) ) |
| 5 |
4
|
releqi |
|- ( Rel dom ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) <-> Rel ( ( 1st ` P ) Func ( 2nd ` P ) ) ) |
| 6 |
1 5
|
mpbir |
|- Rel dom ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) |
| 7 |
|
eqid |
|- ( ( 1st ` P ) Func ( 2nd ` P ) ) = ( ( 1st ` P ) Func ( 2nd ` P ) ) |
| 8 |
|
eqid |
|- ( ( 1st ` P ) Nat ( 2nd ` P ) ) = ( ( 1st ` P ) Nat ( 2nd ` P ) ) |
| 9 |
|
simpr |
|- ( ( P e. _V /\ F e. _V ) -> F e. _V ) |
| 10 |
|
simpl |
|- ( ( P e. _V /\ F e. _V ) -> P e. _V ) |
| 11 |
|
eqidd |
|- ( ( P e. _V /\ F e. _V ) -> ( 1st ` P ) = ( 1st ` P ) ) |
| 12 |
|
eqidd |
|- ( ( P e. _V /\ F e. _V ) -> ( 2nd ` P ) = ( 2nd ` P ) ) |
| 13 |
7 8 9 10 11 12
|
prcofvalg |
|- ( ( P e. _V /\ F e. _V ) -> ( P -o.F F ) = <. ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) , ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , l e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( a e. ( k ( ( 1st ` P ) Nat ( 2nd ` P ) ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |
| 14 |
|
ovex |
|- ( ( 1st ` P ) Func ( 2nd ` P ) ) e. _V |
| 15 |
14
|
mptex |
|- ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) e. _V |
| 16 |
14 14
|
mpoex |
|- ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , l e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( a e. ( k ( ( 1st ` P ) Nat ( 2nd ` P ) ) l ) |-> ( a o. ( 1st ` F ) ) ) ) e. _V |
| 17 |
15 16
|
op1std |
|- ( ( P -o.F F ) = <. ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) , ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , l e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( a e. ( k ( ( 1st ` P ) Nat ( 2nd ` P ) ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. -> ( 1st ` ( P -o.F F ) ) = ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) |
| 18 |
13 17
|
syl |
|- ( ( P e. _V /\ F e. _V ) -> ( 1st ` ( P -o.F F ) ) = ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) |
| 19 |
18
|
dmeqd |
|- ( ( P e. _V /\ F e. _V ) -> dom ( 1st ` ( P -o.F F ) ) = dom ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) |
| 20 |
19
|
releqd |
|- ( ( P e. _V /\ F e. _V ) -> ( Rel dom ( 1st ` ( P -o.F F ) ) <-> Rel dom ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) ) |
| 21 |
6 20
|
mpbiri |
|- ( ( P e. _V /\ F e. _V ) -> Rel dom ( 1st ` ( P -o.F F ) ) ) |
| 22 |
|
rel0 |
|- Rel (/) |
| 23 |
|
reldmprcof |
|- Rel dom -o.F |
| 24 |
23
|
ovprc |
|- ( -. ( P e. _V /\ F e. _V ) -> ( P -o.F F ) = (/) ) |
| 25 |
24
|
fveq2d |
|- ( -. ( P e. _V /\ F e. _V ) -> ( 1st ` ( P -o.F F ) ) = ( 1st ` (/) ) ) |
| 26 |
|
1st0 |
|- ( 1st ` (/) ) = (/) |
| 27 |
25 26
|
eqtrdi |
|- ( -. ( P e. _V /\ F e. _V ) -> ( 1st ` ( P -o.F F ) ) = (/) ) |
| 28 |
27
|
dmeqd |
|- ( -. ( P e. _V /\ F e. _V ) -> dom ( 1st ` ( P -o.F F ) ) = dom (/) ) |
| 29 |
|
dm0 |
|- dom (/) = (/) |
| 30 |
28 29
|
eqtrdi |
|- ( -. ( P e. _V /\ F e. _V ) -> dom ( 1st ` ( P -o.F F ) ) = (/) ) |
| 31 |
30
|
releqd |
|- ( -. ( P e. _V /\ F e. _V ) -> ( Rel dom ( 1st ` ( P -o.F F ) ) <-> Rel (/) ) ) |
| 32 |
22 31
|
mpbiri |
|- ( -. ( P e. _V /\ F e. _V ) -> Rel dom ( 1st ` ( P -o.F F ) ) ) |
| 33 |
21 32
|
pm2.61i |
|- Rel dom ( 1st ` ( P -o.F F ) ) |