| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcofvalg.b |
|- B = ( D Func E ) |
| 2 |
|
prcofvalg.n |
|- N = ( D Nat E ) |
| 3 |
|
prcofvalg.f |
|- ( ph -> F e. U ) |
| 4 |
|
prcofvalg.p |
|- ( ph -> P e. V ) |
| 5 |
|
prcofvalg.d |
|- ( ph -> ( 1st ` P ) = D ) |
| 6 |
|
prcofvalg.e |
|- ( ph -> ( 2nd ` P ) = E ) |
| 7 |
|
df-prcof |
|- -o.F = ( p e. _V , f e. _V |-> [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. ) |
| 8 |
7
|
a1i |
|- ( ph -> -o.F = ( p e. _V , f e. _V |-> [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. ) ) |
| 9 |
|
fvexd |
|- ( ( ph /\ ( p = P /\ f = F ) ) -> ( 1st ` p ) e. _V ) |
| 10 |
|
simprl |
|- ( ( ph /\ ( p = P /\ f = F ) ) -> p = P ) |
| 11 |
10
|
fveq2d |
|- ( ( ph /\ ( p = P /\ f = F ) ) -> ( 1st ` p ) = ( 1st ` P ) ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ ( p = P /\ f = F ) ) -> ( 1st ` P ) = D ) |
| 13 |
11 12
|
eqtrd |
|- ( ( ph /\ ( p = P /\ f = F ) ) -> ( 1st ` p ) = D ) |
| 14 |
|
fvexd |
|- ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) -> ( 2nd ` p ) e. _V ) |
| 15 |
10
|
adantr |
|- ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) -> p = P ) |
| 16 |
15
|
fveq2d |
|- ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) -> ( 2nd ` p ) = ( 2nd ` P ) ) |
| 17 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) -> ( 2nd ` P ) = E ) |
| 18 |
16 17
|
eqtrd |
|- ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) -> ( 2nd ` p ) = E ) |
| 19 |
|
ovexd |
|- ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) -> ( d Func e ) e. _V ) |
| 20 |
|
simplr |
|- ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) -> d = D ) |
| 21 |
|
simpr |
|- ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) -> e = E ) |
| 22 |
20 21
|
oveq12d |
|- ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) -> ( d Func e ) = ( D Func E ) ) |
| 23 |
22 1
|
eqtr4di |
|- ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) -> ( d Func e ) = B ) |
| 24 |
|
simpr |
|- ( ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) /\ b = B ) -> b = B ) |
| 25 |
|
simp-4r |
|- ( ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) /\ b = B ) -> ( p = P /\ f = F ) ) |
| 26 |
25
|
simprd |
|- ( ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) /\ b = B ) -> f = F ) |
| 27 |
26
|
oveq2d |
|- ( ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) /\ b = B ) -> ( k o.func f ) = ( k o.func F ) ) |
| 28 |
24 27
|
mpteq12dv |
|- ( ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) /\ b = B ) -> ( k e. b |-> ( k o.func f ) ) = ( k e. B |-> ( k o.func F ) ) ) |
| 29 |
20 21
|
oveq12d |
|- ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) -> ( d Nat e ) = ( D Nat E ) ) |
| 30 |
29 2
|
eqtr4di |
|- ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) -> ( d Nat e ) = N ) |
| 31 |
30
|
oveqdr |
|- ( ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) /\ b = B ) -> ( k ( d Nat e ) l ) = ( k N l ) ) |
| 32 |
26
|
fveq2d |
|- ( ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) /\ b = B ) -> ( 1st ` f ) = ( 1st ` F ) ) |
| 33 |
32
|
coeq2d |
|- ( ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) /\ b = B ) -> ( a o. ( 1st ` f ) ) = ( a o. ( 1st ` F ) ) ) |
| 34 |
31 33
|
mpteq12dv |
|- ( ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) /\ b = B ) -> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) = ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) |
| 35 |
24 24 34
|
mpoeq123dv |
|- ( ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) /\ b = B ) -> ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) = ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) ) |
| 36 |
28 35
|
opeq12d |
|- ( ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) /\ b = B ) -> <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |
| 37 |
19 23 36
|
csbied2 |
|- ( ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) /\ e = E ) -> [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |
| 38 |
14 18 37
|
csbied2 |
|- ( ( ( ph /\ ( p = P /\ f = F ) ) /\ d = D ) -> [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |
| 39 |
9 13 38
|
csbied2 |
|- ( ( ph /\ ( p = P /\ f = F ) ) -> [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |
| 40 |
4
|
elexd |
|- ( ph -> P e. _V ) |
| 41 |
3
|
elexd |
|- ( ph -> F e. _V ) |
| 42 |
|
opex |
|- <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. e. _V |
| 43 |
42
|
a1i |
|- ( ph -> <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. e. _V ) |
| 44 |
8 39 40 41 43
|
ovmpod |
|- ( ph -> ( P -o.F F ) = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |