Metamath Proof Explorer


Definition df-prcof

Description: Definition of pre-composition functors. The object part of the pre-composition functor given by F pre-composes a functor with F ; the morphism part pre-composes a natural transformation with the object part of F , in terms of function composition. Comments before the definition in § 3 of Chapter X in p. 236 of Mac Lane, Saunders,Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 3 Nov 2025). The notation -o.F is inspired by this page: https://1lab.dev/Cat.Functor.Compose.html .

The pre-composition functor can also be defined as a transposed curry of the functor composition bifunctor ( precofval3 ). But such definition requires an explicit third category. prcoftposcurfuco and prcoftposcurfucoa prove the equivalence. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Assertion df-prcof
|- -o.F = ( p e. _V , f e. _V |-> [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprcof
 |-  -o.F
1 vp
 |-  p
2 cvv
 |-  _V
3 vf
 |-  f
4 c1st
 |-  1st
5 1 cv
 |-  p
6 5 4 cfv
 |-  ( 1st ` p )
7 vd
 |-  d
8 c2nd
 |-  2nd
9 5 8 cfv
 |-  ( 2nd ` p )
10 ve
 |-  e
11 7 cv
 |-  d
12 cfunc
 |-  Func
13 10 cv
 |-  e
14 11 13 12 co
 |-  ( d Func e )
15 vb
 |-  b
16 vk
 |-  k
17 15 cv
 |-  b
18 16 cv
 |-  k
19 ccofu
 |-  o.func
20 3 cv
 |-  f
21 18 20 19 co
 |-  ( k o.func f )
22 16 17 21 cmpt
 |-  ( k e. b |-> ( k o.func f ) )
23 vl
 |-  l
24 va
 |-  a
25 cnat
 |-  Nat
26 11 13 25 co
 |-  ( d Nat e )
27 23 cv
 |-  l
28 18 27 26 co
 |-  ( k ( d Nat e ) l )
29 24 cv
 |-  a
30 20 4 cfv
 |-  ( 1st ` f )
31 29 30 ccom
 |-  ( a o. ( 1st ` f ) )
32 24 28 31 cmpt
 |-  ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) )
33 16 23 17 17 32 cmpo
 |-  ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) )
34 22 33 cop
 |-  <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >.
35 15 14 34 csb
 |-  [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >.
36 10 9 35 csb
 |-  [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >.
37 7 6 36 csb
 |-  [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >.
38 1 3 2 2 37 cmpo
 |-  ( p e. _V , f e. _V |-> [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. )
39 0 38 wceq
 |-  -o.F = ( p e. _V , f e. _V |-> [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. )