| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcoffunc.r |
|- R = ( D FuncCat E ) |
| 2 |
|
prcoffunc.e |
|- ( ph -> E e. Cat ) |
| 3 |
|
prcoftposcurfuco.q |
|- Q = ( C FuncCat D ) |
| 4 |
|
prcoftposcurfuco.o |
|- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) |
| 5 |
|
prcoftposcurfucoa.m |
|- ( ph -> M = ( ( 1st ` .o. ) ` F ) ) |
| 6 |
|
prcoftposcurfucoa.f |
|- ( ph -> F e. ( C Func D ) ) |
| 7 |
|
relfunc |
|- Rel ( C Func D ) |
| 8 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 9 |
7 6 8
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 10 |
9
|
oveq2d |
|- ( ph -> ( <. D , E >. -o.F F ) = ( <. D , E >. -o.F <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 11 |
9
|
fveq2d |
|- ( ph -> ( ( 1st ` .o. ) ` F ) = ( ( 1st ` .o. ) ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 12 |
5 11
|
eqtrd |
|- ( ph -> M = ( ( 1st ` .o. ) ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 13 |
6
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 14 |
1 2 3 4 12 13
|
prcoftposcurfuco |
|- ( ph -> ( <. D , E >. -o.F <. ( 1st ` F ) , ( 2nd ` F ) >. ) = M ) |
| 15 |
10 14
|
eqtrd |
|- ( ph -> ( <. D , E >. -o.F F ) = M ) |