| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcoffunc.r |
|- R = ( D FuncCat E ) |
| 2 |
|
prcoffunc.e |
|- ( ph -> E e. Cat ) |
| 3 |
|
prcoffunc.s |
|- S = ( C FuncCat E ) |
| 4 |
|
prcoffunc.f |
|- ( ph -> F ( C Func D ) G ) |
| 5 |
|
eqid |
|- ( C FuncCat D ) = ( C FuncCat D ) |
| 6 |
|
eqidd |
|- ( ph -> ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) = ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) |
| 7 |
|
df-br |
|- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
| 8 |
4 7
|
sylib |
|- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 9 |
|
eqidd |
|- ( ph -> ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` <. F , G >. ) = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` <. F , G >. ) ) |
| 10 |
1 2 5 6 9 4
|
prcoftposcurfuco |
|- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` <. F , G >. ) ) |
| 11 |
5 1 6 8 2 10 3
|
precofcl |
|- ( ph -> ( <. D , E >. -o.F <. F , G >. ) e. ( R Func S ) ) |