Metamath Proof Explorer


Theorem prcoffunc

Description: The pre-composition functor is a functor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcoffunc.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
prcoffunc.e ( 𝜑𝐸 ∈ Cat )
prcoffunc.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
prcoffunc.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
Assertion prcoffunc ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F𝐹 , 𝐺 ⟩ ) ∈ ( 𝑅 Func 𝑆 ) )

Proof

Step Hyp Ref Expression
1 prcoffunc.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
2 prcoffunc.e ( 𝜑𝐸 ∈ Cat )
3 prcoffunc.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
4 prcoffunc.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
5 eqid ( 𝐶 FuncCat 𝐷 ) = ( 𝐶 FuncCat 𝐷 )
6 eqidd ( 𝜑 → ( ⟨ ( 𝐶 FuncCat 𝐷 ) , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) = ( ⟨ ( 𝐶 FuncCat 𝐷 ) , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) )
7 df-br ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) )
8 4 7 sylib ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) )
9 eqidd ( 𝜑 → ( ( 1st ‘ ( ⟨ ( 𝐶 FuncCat 𝐷 ) , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) ) ‘ ⟨ 𝐹 , 𝐺 ⟩ ) = ( ( 1st ‘ ( ⟨ ( 𝐶 FuncCat 𝐷 ) , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) ) ‘ ⟨ 𝐹 , 𝐺 ⟩ ) )
10 1 2 5 6 9 4 prcoftposcurfuco ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F𝐹 , 𝐺 ⟩ ) = ( ( 1st ‘ ( ⟨ ( 𝐶 FuncCat 𝐷 ) , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) ) ‘ ⟨ 𝐹 , 𝐺 ⟩ ) )
11 5 1 6 8 2 10 3 precofcl ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F𝐹 , 𝐺 ⟩ ) ∈ ( 𝑅 Func 𝑆 ) )