Metamath Proof Explorer


Theorem prcoffunca

Description: The pre-composition functor is a functor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcoffunc.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
prcoffunc.e ( 𝜑𝐸 ∈ Cat )
prcoffunc.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
prcoffunca.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
Assertion prcoffunca ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ∈ ( 𝑅 Func 𝑆 ) )

Proof

Step Hyp Ref Expression
1 prcoffunc.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
2 prcoffunc.e ( 𝜑𝐸 ∈ Cat )
3 prcoffunc.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
4 prcoffunca.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
5 eqid ( 𝐶 FuncCat 𝐷 ) = ( 𝐶 FuncCat 𝐷 )
6 eqidd ( 𝜑 → ( ⟨ ( 𝐶 FuncCat 𝐷 ) , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) = ( ⟨ ( 𝐶 FuncCat 𝐷 ) , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) )
7 eqidd ( 𝜑 → ( ( 1st ‘ ( ⟨ ( 𝐶 FuncCat 𝐷 ) , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) ) ‘ 𝐹 ) = ( ( 1st ‘ ( ⟨ ( 𝐶 FuncCat 𝐷 ) , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) ) ‘ 𝐹 ) )
8 1 2 5 6 7 4 prcoftposcurfucoa ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ( ( 1st ‘ ( ⟨ ( 𝐶 FuncCat 𝐷 ) , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) ) ‘ 𝐹 ) )
9 5 1 6 4 2 8 3 precofcl ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ∈ ( 𝑅 Func 𝑆 ) )