| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcoffunc.r |
⊢ 𝑅 = ( 𝐷 FuncCat 𝐸 ) |
| 2 |
|
prcoffunc.e |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 3 |
|
prcoffunc.s |
⊢ 𝑆 = ( 𝐶 FuncCat 𝐸 ) |
| 4 |
|
prcoffunca.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 5 |
|
eqid |
⊢ ( 𝐶 FuncCat 𝐷 ) = ( 𝐶 FuncCat 𝐷 ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( 〈 ( 𝐶 FuncCat 𝐷 ) , 𝑅 〉 curryF ( ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) = ( 〈 ( 𝐶 FuncCat 𝐷 ) , 𝑅 〉 curryF ( ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) ) |
| 7 |
|
eqidd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 ( 𝐶 FuncCat 𝐷 ) , 𝑅 〉 curryF ( ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) ) ‘ 𝐹 ) = ( ( 1st ‘ ( 〈 ( 𝐶 FuncCat 𝐷 ) , 𝑅 〉 curryF ( ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) ) ‘ 𝐹 ) ) |
| 8 |
1 2 5 6 7 4
|
prcoftposcurfucoa |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = ( ( 1st ‘ ( 〈 ( 𝐶 FuncCat 𝐷 ) , 𝑅 〉 curryF ( ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ∘func ( ( 𝐶 FuncCat 𝐷 ) swapF 𝑅 ) ) ) ) ‘ 𝐹 ) ) |
| 9 |
5 1 6 4 2 8 3
|
precofcl |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ∈ ( 𝑅 Func 𝑆 ) ) |