Metamath Proof Explorer


Theorem prcoffunca

Description: The pre-composition functor is a functor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcoffunc.r
|- R = ( D FuncCat E )
prcoffunc.e
|- ( ph -> E e. Cat )
prcoffunc.s
|- S = ( C FuncCat E )
prcoffunca.f
|- ( ph -> F e. ( C Func D ) )
Assertion prcoffunca
|- ( ph -> ( <. D , E >. -o.F F ) e. ( R Func S ) )

Proof

Step Hyp Ref Expression
1 prcoffunc.r
 |-  R = ( D FuncCat E )
2 prcoffunc.e
 |-  ( ph -> E e. Cat )
3 prcoffunc.s
 |-  S = ( C FuncCat E )
4 prcoffunca.f
 |-  ( ph -> F e. ( C Func D ) )
5 eqid
 |-  ( C FuncCat D ) = ( C FuncCat D )
6 eqidd
 |-  ( ph -> ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) = ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) )
7 eqidd
 |-  ( ph -> ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) )
8 1 2 5 6 7 4 prcoftposcurfucoa
 |-  ( ph -> ( <. D , E >. -o.F F ) = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) )
9 5 1 6 4 2 8 3 precofcl
 |-  ( ph -> ( <. D , E >. -o.F F ) e. ( R Func S ) )