| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcoffunc.r |
|- R = ( D FuncCat E ) |
| 2 |
|
prcoffunc.e |
|- ( ph -> E e. Cat ) |
| 3 |
|
prcoffunc.s |
|- S = ( C FuncCat E ) |
| 4 |
|
prcoffunca.f |
|- ( ph -> F e. ( C Func D ) ) |
| 5 |
|
eqid |
|- ( C FuncCat D ) = ( C FuncCat D ) |
| 6 |
|
eqidd |
|- ( ph -> ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) = ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) |
| 7 |
|
eqidd |
|- ( ph -> ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) ) |
| 8 |
1 2 5 6 7 4
|
prcoftposcurfucoa |
|- ( ph -> ( <. D , E >. -o.F F ) = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` F ) ) |
| 9 |
5 1 6 4 2 8 3
|
precofcl |
|- ( ph -> ( <. D , E >. -o.F F ) e. ( R Func S ) ) |