| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precofval.q |
|- Q = ( C FuncCat D ) |
| 2 |
|
precofval.r |
|- R = ( D FuncCat E ) |
| 3 |
|
precofval.o |
|- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) |
| 4 |
|
precofval.f |
|- ( ph -> F e. ( C Func D ) ) |
| 5 |
|
precofval.e |
|- ( ph -> E e. Cat ) |
| 6 |
|
precofval.k |
|- ( ph -> K = ( ( 1st ` .o. ) ` F ) ) |
| 7 |
|
precofcl.s |
|- S = ( C FuncCat E ) |
| 8 |
1
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
| 9 |
|
relfunc |
|- Rel ( C Func D ) |
| 10 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 11 |
9 4 10
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 12 |
11
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
| 13 |
11
|
funcrcl3 |
|- ( ph -> D e. Cat ) |
| 14 |
1 12 13
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 15 |
2 13 5
|
fuccat |
|- ( ph -> R e. Cat ) |
| 16 |
2 1
|
oveq12i |
|- ( R Xc. Q ) = ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) |
| 17 |
16 7 12 13 5
|
fucofunca |
|- ( ph -> ( <. C , D >. o.F E ) e. ( ( R Xc. Q ) Func S ) ) |
| 18 |
3 8 14 15 17 4 6
|
tposcurf1cl |
|- ( ph -> K e. ( R Func S ) ) |