| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucofunca.t |
|- T = ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) |
| 2 |
|
fucofunca.q |
|- Q = ( C FuncCat E ) |
| 3 |
|
fucofunca.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
fucofunca.d |
|- ( ph -> D e. Cat ) |
| 5 |
|
fucofunca.e |
|- ( ph -> E e. Cat ) |
| 6 |
|
eqidd |
|- ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) |
| 7 |
3 4 5 6
|
fucoelvv |
|- ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) |
| 8 |
|
1st2nd2 |
|- ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) |
| 9 |
7 8
|
syl |
|- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) |
| 10 |
1 2 9 3 4 5
|
fucofunc |
|- ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) ( T Func Q ) ( 2nd ` ( <. C , D >. o.F E ) ) ) |
| 11 |
|
df-br |
|- ( ( 1st ` ( <. C , D >. o.F E ) ) ( T Func Q ) ( 2nd ` ( <. C , D >. o.F E ) ) <-> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. e. ( T Func Q ) ) |
| 12 |
10 11
|
sylib |
|- ( ph -> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. e. ( T Func Q ) ) |
| 13 |
9 12
|
eqeltrd |
|- ( ph -> ( <. C , D >. o.F E ) e. ( T Func Q ) ) |