Metamath Proof Explorer


Theorem fucofunca

Description: The functor composition bifunctor is a functor. See also fucofunc . (Contributed by Zhi Wang, 10-Oct-2025)

Ref Expression
Hypotheses fucofunca.t 𝑇 = ( ( 𝐷 FuncCat 𝐸 ) ×c ( 𝐶 FuncCat 𝐷 ) )
fucofunca.q 𝑄 = ( 𝐶 FuncCat 𝐸 )
fucofunca.c ( 𝜑𝐶 ∈ Cat )
fucofunca.d ( 𝜑𝐷 ∈ Cat )
fucofunca.e ( 𝜑𝐸 ∈ Cat )
Assertion fucofunca ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∈ ( 𝑇 Func 𝑄 ) )

Proof

Step Hyp Ref Expression
1 fucofunca.t 𝑇 = ( ( 𝐷 FuncCat 𝐸 ) ×c ( 𝐶 FuncCat 𝐷 ) )
2 fucofunca.q 𝑄 = ( 𝐶 FuncCat 𝐸 )
3 fucofunca.c ( 𝜑𝐶 ∈ Cat )
4 fucofunca.d ( 𝜑𝐷 ∈ Cat )
5 fucofunca.e ( 𝜑𝐸 ∈ Cat )
6 eqidd ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) )
7 3 4 5 6 fucoelvv ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∈ ( V × V ) )
8 1st2nd2 ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∈ ( V × V ) → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ )
9 7 8 syl ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ )
10 1 2 9 3 4 5 fucofunc ( 𝜑 → ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ( 𝑇 Func 𝑄 ) ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) )
11 df-br ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ( 𝑇 Func 𝑄 ) ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ↔ ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ ∈ ( 𝑇 Func 𝑄 ) )
12 10 11 sylib ( 𝜑 → ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ ∈ ( 𝑇 Func 𝑄 ) )
13 9 12 eqeltrd ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∈ ( 𝑇 Func 𝑄 ) )