Metamath Proof Explorer


Theorem fucoelvv

Description: A functor composition bifunctor is an ordered pair. Enables 1st2ndb . (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fucofval.c ( 𝜑𝐶𝑇 )
fucofval.d ( 𝜑𝐷𝑈 )
fucofval.e ( 𝜑𝐸𝑉 )
fucofval.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = )
Assertion fucoelvv ( 𝜑 ∈ ( V × V ) )

Proof

Step Hyp Ref Expression
1 fucofval.c ( 𝜑𝐶𝑇 )
2 fucofval.d ( 𝜑𝐷𝑈 )
3 fucofval.e ( 𝜑𝐸𝑉 )
4 fucofval.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = )
5 eqidd ( 𝜑 → ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) )
6 1 2 3 4 5 fucofval ( 𝜑 = ⟨ ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) , ( 𝑢 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) , 𝑣 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ↦ ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ⟩ )
7 df-cofu func = ( 𝑔 ∈ V , 𝑓 ∈ V ↦ ⟨ ( ( 1st𝑔 ) ∘ ( 1st𝑓 ) ) , ( 𝑥 ∈ dom dom ( 2nd𝑓 ) , 𝑦 ∈ dom dom ( 2nd𝑓 ) ↦ ( ( ( ( 1st𝑓 ) ‘ 𝑥 ) ( 2nd𝑔 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ) ) ⟩ )
8 7 mpofun Fun ∘func
9 ovex ( 𝐷 Func 𝐸 ) ∈ V
10 ovex ( 𝐶 Func 𝐷 ) ∈ V
11 9 10 xpex ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ∈ V
12 resfunexg ( ( Fun ∘func ∧ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ∈ V ) → ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ∈ V )
13 8 11 12 mp2an ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ∈ V
14 11 11 mpoex ( 𝑢 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) , 𝑣 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ↦ ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ∈ V
15 13 14 opelvv ⟨ ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) , ( 𝑢 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) , 𝑣 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ↦ ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ⟩ ∈ ( V × V )
16 6 15 eqeltrdi ( 𝜑 ∈ ( V × V ) )