Step |
Hyp |
Ref |
Expression |
1 |
|
fucofval.c |
|- ( ph -> C e. T ) |
2 |
|
fucofval.d |
|- ( ph -> D e. U ) |
3 |
|
fucofval.e |
|- ( ph -> E e. V ) |
4 |
|
fucofval.o |
|- ( ph -> ( <. C , D >. o.F E ) = .o. ) |
5 |
|
eqidd |
|- ( ph -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. ( C Func D ) ) ) |
6 |
1 2 3 4 5
|
fucofval |
|- ( ph -> .o. = <. ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) , ( u e. ( ( D Func E ) X. ( C Func D ) ) , v e. ( ( D Func E ) X. ( C Func D ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) |
7 |
|
df-cofu |
|- o.func = ( g e. _V , f e. _V |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |
8 |
7
|
mpofun |
|- Fun o.func |
9 |
|
ovex |
|- ( D Func E ) e. _V |
10 |
|
ovex |
|- ( C Func D ) e. _V |
11 |
9 10
|
xpex |
|- ( ( D Func E ) X. ( C Func D ) ) e. _V |
12 |
|
resfunexg |
|- ( ( Fun o.func /\ ( ( D Func E ) X. ( C Func D ) ) e. _V ) -> ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) e. _V ) |
13 |
8 11 12
|
mp2an |
|- ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) e. _V |
14 |
11 11
|
mpoex |
|- ( u e. ( ( D Func E ) X. ( C Func D ) ) , v e. ( ( D Func E ) X. ( C Func D ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) e. _V |
15 |
13 14
|
opelvv |
|- <. ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) , ( u e. ( ( D Func E ) X. ( C Func D ) ) , v e. ( ( D Func E ) X. ( C Func D ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. e. ( _V X. _V ) |
16 |
6 15
|
eqeltrdi |
|- ( ph -> .o. e. ( _V X. _V ) ) |