Description: Value of the function giving the functor composition bifunctor. Hypotheses fucofval.c and fucofval.d are not redundant ( fucofvalne ). (Contributed by Zhi Wang, 29-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fucofval.c | |- ( ph -> C e. T ) |
|
fucofval.d | |- ( ph -> D e. U ) |
||
fucofval.e | |- ( ph -> E e. V ) |
||
fucofval.o | |- ( ph -> ( <. C , D >. o.F E ) = .o. ) |
||
fucofval.w | |- ( ph -> W = ( ( D Func E ) X. ( C Func D ) ) ) |
||
Assertion | fucofval | |- ( ph -> .o. = <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucofval.c | |- ( ph -> C e. T ) |
|
2 | fucofval.d | |- ( ph -> D e. U ) |
|
3 | fucofval.e | |- ( ph -> E e. V ) |
|
4 | fucofval.o | |- ( ph -> ( <. C , D >. o.F E ) = .o. ) |
|
5 | fucofval.w | |- ( ph -> W = ( ( D Func E ) X. ( C Func D ) ) ) |
|
6 | opex | |- <. C , D >. e. _V |
|
7 | 6 | a1i | |- ( ph -> <. C , D >. e. _V ) |
8 | op1stg | |- ( ( C e. T /\ D e. U ) -> ( 1st ` <. C , D >. ) = C ) |
|
9 | 1 2 8 | syl2anc | |- ( ph -> ( 1st ` <. C , D >. ) = C ) |
10 | op2ndg | |- ( ( C e. T /\ D e. U ) -> ( 2nd ` <. C , D >. ) = D ) |
|
11 | 1 2 10 | syl2anc | |- ( ph -> ( 2nd ` <. C , D >. ) = D ) |
12 | 7 9 11 3 4 5 | fucofvalg | |- ( ph -> .o. = <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) |