| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fucofvalne.c | 
							 |-  ( ph -> -. ( C e. _V /\ D e. _V ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fucofvalne.e | 
							 |-  ( ph -> E e. Cat )  | 
						
						
							| 3 | 
							
								
							 | 
							fucofvalne.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = .o. )  | 
						
						
							| 4 | 
							
								
							 | 
							fucofvalne.w | 
							 |-  ( ph -> W = ( ( D Func E ) X. ( C Func D ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							0ex | 
							 |-  (/) e. _V  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							 |-  ( ph -> (/) e. _V )  | 
						
						
							| 7 | 
							
								
							 | 
							1st0 | 
							 |-  ( 1st ` (/) ) = (/)  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							 |-  ( ph -> ( 1st ` (/) ) = (/) )  | 
						
						
							| 9 | 
							
								
							 | 
							2nd0 | 
							 |-  ( 2nd ` (/) ) = (/)  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							 |-  ( ph -> ( 2nd ` (/) ) = (/) )  | 
						
						
							| 11 | 
							
								
							 | 
							opprc | 
							 |-  ( -. ( C e. _V /\ D e. _V ) -> <. C , D >. = (/) )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							syl | 
							 |-  ( ph -> <. C , D >. = (/) )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq1d | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = ( (/) o.F E ) )  | 
						
						
							| 14 | 
							
								13 3
							 | 
							eqtr3d | 
							 |-  ( ph -> ( (/) o.F E ) = .o. )  | 
						
						
							| 15 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( (/) Func E ) X. ( (/) Func (/) ) ) )  | 
						
						
							| 16 | 
							
								6 8 10 2 14 15
							 | 
							fucofvalg | 
							 |-  ( ph -> .o. = <. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) , ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. )  | 
						
						
							| 17 | 
							
								
							 | 
							opex | 
							 |-  <. (/) , (/) >. e. _V  | 
						
						
							| 18 | 
							
								17
							 | 
							snnz | 
							 |-  { <. (/) , (/) >. } =/= (/) | 
						
						
							| 19 | 
							
								18
							 | 
							neii | 
							 |-  -. { <. (/) , (/) >. } = (/) | 
						
						
							| 20 | 
							
								
							 | 
							ioran | 
							 |-  ( -. ( { <. (/) , (/) >. } = (/) \/ { <. (/) , (/) >. } = (/) ) <-> ( -. { <. (/) , (/) >. } = (/) /\ -. { <. (/) , (/) >. } = (/) ) ) | 
						
						
							| 21 | 
							
								
							 | 
							xpeq0 | 
							 |-  ( ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) <-> ( { <. (/) , (/) >. } = (/) \/ { <. (/) , (/) >. } = (/) ) ) | 
						
						
							| 22 | 
							
								21
							 | 
							biimpi | 
							 |-  ( ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) -> ( { <. (/) , (/) >. } = (/) \/ { <. (/) , (/) >. } = (/) ) ) | 
						
						
							| 23 | 
							
								22
							 | 
							con3i | 
							 |-  ( -. ( { <. (/) , (/) >. } = (/) \/ { <. (/) , (/) >. } = (/) ) -> -. ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) ) | 
						
						
							| 24 | 
							
								20 23
							 | 
							sylbir | 
							 |-  ( ( -. { <. (/) , (/) >. } = (/) /\ -. { <. (/) , (/) >. } = (/) ) -> -. ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) ) | 
						
						
							| 25 | 
							
								19 19 24
							 | 
							mp2an | 
							 |-  -. ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) | 
						
						
							| 26 | 
							
								2
							 | 
							0func | 
							 |-  ( ph -> ( (/) Func E ) = { <. (/) , (/) >. } ) | 
						
						
							| 27 | 
							
								
							 | 
							0cat | 
							 |-  (/) e. Cat  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							 |-  ( ph -> (/) e. Cat )  | 
						
						
							| 29 | 
							
								28
							 | 
							0func | 
							 |-  ( ph -> ( (/) Func (/) ) = { <. (/) , (/) >. } ) | 
						
						
							| 30 | 
							
								26 29
							 | 
							xpeq12d | 
							 |-  ( ph -> ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) ) | 
						
						
							| 31 | 
							
								
							 | 
							df-func | 
							 |-  Func = ( t e. Cat , u e. Cat |-> { <. f , g >. | [. ( Base ` t ) / b ]. ( f : b --> ( Base ` u ) /\ g e. X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) /\ A. x e. b ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) } ) | 
						
						
							| 32 | 
							
								31
							 | 
							reldmmpo | 
							 |-  Rel dom Func  | 
						
						
							| 33 | 
							
								
							 | 
							0nelrel0 | 
							 |-  ( Rel dom Func -> -. (/) e. dom Func )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							ax-mp | 
							 |-  -. (/) e. dom Func  | 
						
						
							| 35 | 
							
								12
							 | 
							eleq1d | 
							 |-  ( ph -> ( <. C , D >. e. dom Func <-> (/) e. dom Func ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							mtbiri | 
							 |-  ( ph -> -. <. C , D >. e. dom Func )  | 
						
						
							| 37 | 
							
								
							 | 
							df-ov | 
							 |-  ( C Func D ) = ( Func ` <. C , D >. )  | 
						
						
							| 38 | 
							
								
							 | 
							ndmfv | 
							 |-  ( -. <. C , D >. e. dom Func -> ( Func ` <. C , D >. ) = (/) )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							eqtrid | 
							 |-  ( -. <. C , D >. e. dom Func -> ( C Func D ) = (/) )  | 
						
						
							| 40 | 
							
								39
							 | 
							xpeq2d | 
							 |-  ( -. <. C , D >. e. dom Func -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. (/) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							xp0 | 
							 |-  ( ( D Func E ) X. (/) ) = (/)  | 
						
						
							| 42 | 
							
								40 41
							 | 
							eqtrdi | 
							 |-  ( -. <. C , D >. e. dom Func -> ( ( D Func E ) X. ( C Func D ) ) = (/) )  | 
						
						
							| 43 | 
							
								36 42
							 | 
							syl | 
							 |-  ( ph -> ( ( D Func E ) X. ( C Func D ) ) = (/) )  | 
						
						
							| 44 | 
							
								30 43
							 | 
							eqeq12d | 
							 |-  ( ph -> ( ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( D Func E ) X. ( C Func D ) ) <-> ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) ) ) | 
						
						
							| 45 | 
							
								25 44
							 | 
							mtbiri | 
							 |-  ( ph -> -. ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( D Func E ) X. ( C Func D ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							rescofuf | 
							 |-  ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) : ( ( (/) Func E ) X. ( (/) Func (/) ) ) --> ( (/) Func E )  | 
						
						
							| 47 | 
							
								46
							 | 
							fdmi | 
							 |-  dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = ( ( (/) Func E ) X. ( (/) Func (/) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							rescofuf | 
							 |-  ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E )  | 
						
						
							| 49 | 
							
								48
							 | 
							fdmi | 
							 |-  dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) = ( ( D Func E ) X. ( C Func D ) )  | 
						
						
							| 50 | 
							
								47 49
							 | 
							eqeq12i | 
							 |-  ( dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) <-> ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( D Func E ) X. ( C Func D ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							biimpi | 
							 |-  ( dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) -> ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( D Func E ) X. ( C Func D ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							con3i | 
							 |-  ( -. ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( D Func E ) X. ( C Func D ) ) -> -. dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							dmeq | 
							 |-  ( ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) -> dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							con3i | 
							 |-  ( -. dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) -> -. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )  | 
						
						
							| 55 | 
							
								45 52 54
							 | 
							3syl | 
							 |-  ( ph -> -. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							neqned | 
							 |-  ( ph -> ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) =/= ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )  | 
						
						
							| 57 | 
							
								4
							 | 
							reseq2d | 
							 |-  ( ph -> ( o.func |` W ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )  | 
						
						
							| 58 | 
							
								56 57
							 | 
							neeqtrrd | 
							 |-  ( ph -> ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) =/= ( o.func |` W ) )  | 
						
						
							| 59 | 
							
								
							 | 
							ovex | 
							 |-  ( (/) Func E ) e. _V  | 
						
						
							| 60 | 
							
								
							 | 
							ovex | 
							 |-  ( (/) Func (/) ) e. _V  | 
						
						
							| 61 | 
							
								59 60
							 | 
							xpex | 
							 |-  ( ( (/) Func E ) X. ( (/) Func (/) ) ) e. _V  | 
						
						
							| 62 | 
							
								
							 | 
							fex | 
							 |-  ( ( ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) : ( ( (/) Func E ) X. ( (/) Func (/) ) ) --> ( (/) Func E ) /\ ( ( (/) Func E ) X. ( (/) Func (/) ) ) e. _V ) -> ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) e. _V )  | 
						
						
							| 63 | 
							
								46 61 62
							 | 
							mp2an | 
							 |-  ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) e. _V  | 
						
						
							| 64 | 
							
								61 61
							 | 
							mpoex | 
							 |-  ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) e. _V  | 
						
						
							| 65 | 
							
								
							 | 
							opth1neg | 
							 |-  ( ( ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) e. _V /\ ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) e. _V ) -> ( ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) =/= ( o.func |` W ) -> <. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) , ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. =/= <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) )  | 
						
						
							| 66 | 
							
								63 64 65
							 | 
							mp2an | 
							 |-  ( ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) =/= ( o.func |` W ) -> <. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) , ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. =/= <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. )  | 
						
						
							| 67 | 
							
								58 66
							 | 
							syl | 
							 |-  ( ph -> <. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) , ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. =/= <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. )  | 
						
						
							| 68 | 
							
								16 67
							 | 
							eqnetrd | 
							 |-  ( ph -> .o. =/= <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. )  |