| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucofvalne.c |
|- ( ph -> -. ( C e. _V /\ D e. _V ) ) |
| 2 |
|
fucofvalne.e |
|- ( ph -> E e. Cat ) |
| 3 |
|
fucofvalne.o |
|- ( ph -> ( <. C , D >. o.F E ) = .o. ) |
| 4 |
|
fucofvalne.w |
|- ( ph -> W = ( ( D Func E ) X. ( C Func D ) ) ) |
| 5 |
|
0ex |
|- (/) e. _V |
| 6 |
5
|
a1i |
|- ( ph -> (/) e. _V ) |
| 7 |
|
1st0 |
|- ( 1st ` (/) ) = (/) |
| 8 |
7
|
a1i |
|- ( ph -> ( 1st ` (/) ) = (/) ) |
| 9 |
|
2nd0 |
|- ( 2nd ` (/) ) = (/) |
| 10 |
9
|
a1i |
|- ( ph -> ( 2nd ` (/) ) = (/) ) |
| 11 |
|
opprc |
|- ( -. ( C e. _V /\ D e. _V ) -> <. C , D >. = (/) ) |
| 12 |
1 11
|
syl |
|- ( ph -> <. C , D >. = (/) ) |
| 13 |
12
|
oveq1d |
|- ( ph -> ( <. C , D >. o.F E ) = ( (/) o.F E ) ) |
| 14 |
13 3
|
eqtr3d |
|- ( ph -> ( (/) o.F E ) = .o. ) |
| 15 |
|
eqidd |
|- ( ph -> ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) |
| 16 |
6 8 10 2 14 15
|
fucofvalg |
|- ( ph -> .o. = <. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) , ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) |
| 17 |
|
opex |
|- <. (/) , (/) >. e. _V |
| 18 |
17
|
snnz |
|- { <. (/) , (/) >. } =/= (/) |
| 19 |
18
|
neii |
|- -. { <. (/) , (/) >. } = (/) |
| 20 |
|
ioran |
|- ( -. ( { <. (/) , (/) >. } = (/) \/ { <. (/) , (/) >. } = (/) ) <-> ( -. { <. (/) , (/) >. } = (/) /\ -. { <. (/) , (/) >. } = (/) ) ) |
| 21 |
|
xpeq0 |
|- ( ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) <-> ( { <. (/) , (/) >. } = (/) \/ { <. (/) , (/) >. } = (/) ) ) |
| 22 |
21
|
biimpi |
|- ( ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) -> ( { <. (/) , (/) >. } = (/) \/ { <. (/) , (/) >. } = (/) ) ) |
| 23 |
22
|
con3i |
|- ( -. ( { <. (/) , (/) >. } = (/) \/ { <. (/) , (/) >. } = (/) ) -> -. ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) ) |
| 24 |
20 23
|
sylbir |
|- ( ( -. { <. (/) , (/) >. } = (/) /\ -. { <. (/) , (/) >. } = (/) ) -> -. ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) ) |
| 25 |
19 19 24
|
mp2an |
|- -. ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) |
| 26 |
2
|
0func |
|- ( ph -> ( (/) Func E ) = { <. (/) , (/) >. } ) |
| 27 |
|
0cat |
|- (/) e. Cat |
| 28 |
27
|
a1i |
|- ( ph -> (/) e. Cat ) |
| 29 |
28
|
0func |
|- ( ph -> ( (/) Func (/) ) = { <. (/) , (/) >. } ) |
| 30 |
26 29
|
xpeq12d |
|- ( ph -> ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) ) |
| 31 |
|
df-func |
|- Func = ( t e. Cat , u e. Cat |-> { <. f , g >. | [. ( Base ` t ) / b ]. ( f : b --> ( Base ` u ) /\ g e. X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) /\ A. x e. b ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) } ) |
| 32 |
31
|
reldmmpo |
|- Rel dom Func |
| 33 |
|
0nelrel0 |
|- ( Rel dom Func -> -. (/) e. dom Func ) |
| 34 |
32 33
|
ax-mp |
|- -. (/) e. dom Func |
| 35 |
12
|
eleq1d |
|- ( ph -> ( <. C , D >. e. dom Func <-> (/) e. dom Func ) ) |
| 36 |
34 35
|
mtbiri |
|- ( ph -> -. <. C , D >. e. dom Func ) |
| 37 |
|
df-ov |
|- ( C Func D ) = ( Func ` <. C , D >. ) |
| 38 |
|
ndmfv |
|- ( -. <. C , D >. e. dom Func -> ( Func ` <. C , D >. ) = (/) ) |
| 39 |
37 38
|
eqtrid |
|- ( -. <. C , D >. e. dom Func -> ( C Func D ) = (/) ) |
| 40 |
39
|
xpeq2d |
|- ( -. <. C , D >. e. dom Func -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. (/) ) ) |
| 41 |
|
xp0 |
|- ( ( D Func E ) X. (/) ) = (/) |
| 42 |
40 41
|
eqtrdi |
|- ( -. <. C , D >. e. dom Func -> ( ( D Func E ) X. ( C Func D ) ) = (/) ) |
| 43 |
36 42
|
syl |
|- ( ph -> ( ( D Func E ) X. ( C Func D ) ) = (/) ) |
| 44 |
30 43
|
eqeq12d |
|- ( ph -> ( ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( D Func E ) X. ( C Func D ) ) <-> ( { <. (/) , (/) >. } X. { <. (/) , (/) >. } ) = (/) ) ) |
| 45 |
25 44
|
mtbiri |
|- ( ph -> -. ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( D Func E ) X. ( C Func D ) ) ) |
| 46 |
|
rescofuf |
|- ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) : ( ( (/) Func E ) X. ( (/) Func (/) ) ) --> ( (/) Func E ) |
| 47 |
46
|
fdmi |
|- dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = ( ( (/) Func E ) X. ( (/) Func (/) ) ) |
| 48 |
|
rescofuf |
|- ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E ) |
| 49 |
48
|
fdmi |
|- dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) = ( ( D Func E ) X. ( C Func D ) ) |
| 50 |
47 49
|
eqeq12i |
|- ( dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) <-> ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( D Func E ) X. ( C Func D ) ) ) |
| 51 |
50
|
biimpi |
|- ( dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) -> ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( D Func E ) X. ( C Func D ) ) ) |
| 52 |
51
|
con3i |
|- ( -. ( ( (/) Func E ) X. ( (/) Func (/) ) ) = ( ( D Func E ) X. ( C Func D ) ) -> -. dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ) |
| 53 |
|
dmeq |
|- ( ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) -> dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ) |
| 54 |
53
|
con3i |
|- ( -. dom ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = dom ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) -> -. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ) |
| 55 |
45 52 54
|
3syl |
|- ( ph -> -. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ) |
| 56 |
55
|
neqned |
|- ( ph -> ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) =/= ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ) |
| 57 |
4
|
reseq2d |
|- ( ph -> ( o.func |` W ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ) |
| 58 |
56 57
|
neeqtrrd |
|- ( ph -> ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) =/= ( o.func |` W ) ) |
| 59 |
|
ovex |
|- ( (/) Func E ) e. _V |
| 60 |
|
ovex |
|- ( (/) Func (/) ) e. _V |
| 61 |
59 60
|
xpex |
|- ( ( (/) Func E ) X. ( (/) Func (/) ) ) e. _V |
| 62 |
|
fex |
|- ( ( ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) : ( ( (/) Func E ) X. ( (/) Func (/) ) ) --> ( (/) Func E ) /\ ( ( (/) Func E ) X. ( (/) Func (/) ) ) e. _V ) -> ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) e. _V ) |
| 63 |
46 61 62
|
mp2an |
|- ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) e. _V |
| 64 |
61 61
|
mpoex |
|- ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) e. _V |
| 65 |
|
opth1neg |
|- ( ( ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) e. _V /\ ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) e. _V ) -> ( ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) =/= ( o.func |` W ) -> <. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) , ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. =/= <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) ) |
| 66 |
63 64 65
|
mp2an |
|- ( ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) =/= ( o.func |` W ) -> <. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) , ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. =/= <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) |
| 67 |
58 66
|
syl |
|- ( ph -> <. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) , ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. =/= <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) |
| 68 |
16 67
|
eqnetrd |
|- ( ph -> .o. =/= <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) |