Metamath Proof Explorer


Theorem fucofvalne

Description: Value of the function giving the functor composition bifunctor, if C or D are not sets. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses fucofvalne.c ( 𝜑 → ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) )
fucofvalne.e ( 𝜑𝐸 ∈ Cat )
fucofvalne.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = )
fucofvalne.w ( 𝜑𝑊 = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) )
Assertion fucofvalne ( 𝜑 ≠ ⟨ ( ∘func𝑊 ) , ( 𝑢𝑊 , 𝑣𝑊 ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 fucofvalne.c ( 𝜑 → ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) )
2 fucofvalne.e ( 𝜑𝐸 ∈ Cat )
3 fucofvalne.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = )
4 fucofvalne.w ( 𝜑𝑊 = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) )
5 0ex ∅ ∈ V
6 5 a1i ( 𝜑 → ∅ ∈ V )
7 1st0 ( 1st ‘ ∅ ) = ∅
8 7 a1i ( 𝜑 → ( 1st ‘ ∅ ) = ∅ )
9 2nd0 ( 2nd ‘ ∅ ) = ∅
10 9 a1i ( 𝜑 → ( 2nd ‘ ∅ ) = ∅ )
11 opprc ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ⟨ 𝐶 , 𝐷 ⟩ = ∅ )
12 1 11 syl ( 𝜑 → ⟨ 𝐶 , 𝐷 ⟩ = ∅ )
13 12 oveq1d ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ( ∅ ∘F 𝐸 ) )
14 13 3 eqtr3d ( 𝜑 → ( ∅ ∘F 𝐸 ) = )
15 eqidd ( 𝜑 → ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) )
16 6 8 10 2 14 15 fucofvalg ( 𝜑 = ⟨ ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) , ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( ∅ Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( ∅ Nat ∅ ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ⟩ )
17 opex ⟨ ∅ , ∅ ⟩ ∈ V
18 17 snnz { ⟨ ∅ , ∅ ⟩ } ≠ ∅
19 18 neii ¬ { ⟨ ∅ , ∅ ⟩ } = ∅
20 ioran ( ¬ ( { ⟨ ∅ , ∅ ⟩ } = ∅ ∨ { ⟨ ∅ , ∅ ⟩ } = ∅ ) ↔ ( ¬ { ⟨ ∅ , ∅ ⟩ } = ∅ ∧ ¬ { ⟨ ∅ , ∅ ⟩ } = ∅ ) )
21 xpeq0 ( ( { ⟨ ∅ , ∅ ⟩ } × { ⟨ ∅ , ∅ ⟩ } ) = ∅ ↔ ( { ⟨ ∅ , ∅ ⟩ } = ∅ ∨ { ⟨ ∅ , ∅ ⟩ } = ∅ ) )
22 21 biimpi ( ( { ⟨ ∅ , ∅ ⟩ } × { ⟨ ∅ , ∅ ⟩ } ) = ∅ → ( { ⟨ ∅ , ∅ ⟩ } = ∅ ∨ { ⟨ ∅ , ∅ ⟩ } = ∅ ) )
23 22 con3i ( ¬ ( { ⟨ ∅ , ∅ ⟩ } = ∅ ∨ { ⟨ ∅ , ∅ ⟩ } = ∅ ) → ¬ ( { ⟨ ∅ , ∅ ⟩ } × { ⟨ ∅ , ∅ ⟩ } ) = ∅ )
24 20 23 sylbir ( ( ¬ { ⟨ ∅ , ∅ ⟩ } = ∅ ∧ ¬ { ⟨ ∅ , ∅ ⟩ } = ∅ ) → ¬ ( { ⟨ ∅ , ∅ ⟩ } × { ⟨ ∅ , ∅ ⟩ } ) = ∅ )
25 19 19 24 mp2an ¬ ( { ⟨ ∅ , ∅ ⟩ } × { ⟨ ∅ , ∅ ⟩ } ) = ∅
26 2 0func ( 𝜑 → ( ∅ Func 𝐸 ) = { ⟨ ∅ , ∅ ⟩ } )
27 0cat ∅ ∈ Cat
28 27 a1i ( 𝜑 → ∅ ∈ Cat )
29 28 0func ( 𝜑 → ( ∅ Func ∅ ) = { ⟨ ∅ , ∅ ⟩ } )
30 26 29 xpeq12d ( 𝜑 → ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( { ⟨ ∅ , ∅ ⟩ } × { ⟨ ∅ , ∅ ⟩ } ) )
31 df-func Func = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ { ⟨ 𝑓 , 𝑔 ⟩ ∣ [ ( Base ‘ 𝑡 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑢 ) ∧ 𝑔X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑢 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦𝑏𝑧𝑏𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝑢 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } )
32 31 reldmmpo Rel dom Func
33 0nelrel0 ( Rel dom Func → ¬ ∅ ∈ dom Func )
34 32 33 ax-mp ¬ ∅ ∈ dom Func
35 12 eleq1d ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∈ dom Func ↔ ∅ ∈ dom Func ) )
36 34 35 mtbiri ( 𝜑 → ¬ ⟨ 𝐶 , 𝐷 ⟩ ∈ dom Func )
37 df-ov ( 𝐶 Func 𝐷 ) = ( Func ‘ ⟨ 𝐶 , 𝐷 ⟩ )
38 ndmfv ( ¬ ⟨ 𝐶 , 𝐷 ⟩ ∈ dom Func → ( Func ‘ ⟨ 𝐶 , 𝐷 ⟩ ) = ∅ )
39 37 38 eqtrid ( ¬ ⟨ 𝐶 , 𝐷 ⟩ ∈ dom Func → ( 𝐶 Func 𝐷 ) = ∅ )
40 39 xpeq2d ( ¬ ⟨ 𝐶 , 𝐷 ⟩ ∈ dom Func → ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) = ( ( 𝐷 Func 𝐸 ) × ∅ ) )
41 xp0 ( ( 𝐷 Func 𝐸 ) × ∅ ) = ∅
42 40 41 eqtrdi ( ¬ ⟨ 𝐶 , 𝐷 ⟩ ∈ dom Func → ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) = ∅ )
43 36 42 syl ( 𝜑 → ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) = ∅ )
44 30 43 eqeq12d ( 𝜑 → ( ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ↔ ( { ⟨ ∅ , ∅ ⟩ } × { ⟨ ∅ , ∅ ⟩ } ) = ∅ ) )
45 25 44 mtbiri ( 𝜑 → ¬ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) )
46 rescofuf ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) : ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ⟶ ( ∅ Func 𝐸 )
47 46 fdmi dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) )
48 rescofuf ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) : ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ⟶ ( 𝐶 Func 𝐸 )
49 48 fdmi dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) )
50 47 49 eqeq12i ( dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ↔ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) )
51 50 biimpi ( dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) → ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) )
52 51 con3i ( ¬ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) → ¬ dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) )
53 dmeq ( ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) → dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) )
54 53 con3i ( ¬ dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) → ¬ ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) )
55 45 52 54 3syl ( 𝜑 → ¬ ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) )
56 55 neqned ( 𝜑 → ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ≠ ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) )
57 4 reseq2d ( 𝜑 → ( ∘func𝑊 ) = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) )
58 56 57 neeqtrrd ( 𝜑 → ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ≠ ( ∘func𝑊 ) )
59 ovex ( ∅ Func 𝐸 ) ∈ V
60 ovex ( ∅ Func ∅ ) ∈ V
61 59 60 xpex ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ∈ V
62 fex ( ( ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) : ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ⟶ ( ∅ Func 𝐸 ) ∧ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ∈ V ) → ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ∈ V )
63 46 61 62 mp2an ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ∈ V
64 61 61 mpoex ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( ∅ Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( ∅ Nat ∅ ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ∈ V
65 opth1neg ( ( ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ∈ V ∧ ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( ∅ Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( ∅ Nat ∅ ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ∈ V ) → ( ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ≠ ( ∘func𝑊 ) → ⟨ ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) , ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( ∅ Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( ∅ Nat ∅ ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ⟩ ≠ ⟨ ( ∘func𝑊 ) , ( 𝑢𝑊 , 𝑣𝑊 ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ⟩ ) )
66 63 64 65 mp2an ( ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ≠ ( ∘func𝑊 ) → ⟨ ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) , ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( ∅ Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( ∅ Nat ∅ ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ⟩ ≠ ⟨ ( ∘func𝑊 ) , ( 𝑢𝑊 , 𝑣𝑊 ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ⟩ )
67 58 66 syl ( 𝜑 → ⟨ ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) , ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( ∅ Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( ∅ Nat ∅ ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ⟩ ≠ ⟨ ( ∘func𝑊 ) , ( 𝑢𝑊 , 𝑣𝑊 ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ⟩ )
68 16 67 eqnetrd ( 𝜑 ≠ ⟨ ( ∘func𝑊 ) , ( 𝑢𝑊 , 𝑣𝑊 ( 1st ‘ ( 2nd𝑢 ) ) / 𝑓 ( 1st ‘ ( 1st𝑢 ) ) / 𝑘 ( 2nd ‘ ( 1st𝑢 ) ) / 𝑙 ( 1st ‘ ( 2nd𝑣 ) ) / 𝑚 ( 1st ‘ ( 1st𝑣 ) ) / 𝑟 ( 𝑏 ∈ ( ( 1st𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st𝑣 ) ) , 𝑎 ∈ ( ( 2nd𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚𝑥 ) ) ( ⟨ ( 𝑘 ‘ ( 𝑓𝑥 ) ) , ( 𝑘 ‘ ( 𝑚𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚𝑥 ) ) ) ( ( ( 𝑓𝑥 ) 𝑙 ( 𝑚𝑥 ) ) ‘ ( 𝑎𝑥 ) ) ) ) ) ) ⟩ )