| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fucofvalne.c | 
							⊢ ( 𝜑  →  ¬  ( 𝐶  ∈  V  ∧  𝐷  ∈  V ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fucofvalne.e | 
							⊢ ( 𝜑  →  𝐸  ∈  Cat )  | 
						
						
							| 3 | 
							
								
							 | 
							fucofvalne.o | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =   ⚬  )  | 
						
						
							| 4 | 
							
								
							 | 
							fucofvalne.w | 
							⊢ ( 𝜑  →  𝑊  =  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( 𝜑  →  ∅  ∈  V )  | 
						
						
							| 7 | 
							
								
							 | 
							1st0 | 
							⊢ ( 1st  ‘ ∅ )  =  ∅  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 1st  ‘ ∅ )  =  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							2nd0 | 
							⊢ ( 2nd  ‘ ∅ )  =  ∅  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 2nd  ‘ ∅ )  =  ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							opprc | 
							⊢ ( ¬  ( 𝐶  ∈  V  ∧  𝐷  ∈  V )  →  〈 𝐶 ,  𝐷 〉  =  ∅ )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							syl | 
							⊢ ( 𝜑  →  〈 𝐶 ,  𝐷 〉  =  ∅ )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =  ( ∅  ∘F  𝐸 ) )  | 
						
						
							| 14 | 
							
								13 3
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ( ∅  ∘F  𝐸 )  =   ⚬  )  | 
						
						
							| 15 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  =  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  | 
						
						
							| 16 | 
							
								6 8 10 2 14 15
							 | 
							fucofvalg | 
							⊢ ( 𝜑  →   ⚬   =  〈 (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ) ,  ( 𝑢  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ,  𝑣  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  ↦  ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑢 ) )  /  𝑓 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑘 ⦌ ⦋ ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑙 ⦌ ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑣 ) )  /  𝑚 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑣 ) )  /  𝑟 ⦌ ( 𝑏  ∈  ( ( 1st  ‘ 𝑢 ) ( ∅  Nat  𝐸 ) ( 1st  ‘ 𝑣 ) ) ,  𝑎  ∈  ( ( 2nd  ‘ 𝑢 ) ( ∅  Nat  ∅ ) ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑥  ∈  ( Base ‘ ∅ )  ↦  ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) ,  ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 )  | 
						
						
							| 17 | 
							
								
							 | 
							opex | 
							⊢ 〈 ∅ ,  ∅ 〉  ∈  V  | 
						
						
							| 18 | 
							
								17
							 | 
							snnz | 
							⊢ { 〈 ∅ ,  ∅ 〉 }  ≠  ∅  | 
						
						
							| 19 | 
							
								18
							 | 
							neii | 
							⊢ ¬  { 〈 ∅ ,  ∅ 〉 }  =  ∅  | 
						
						
							| 20 | 
							
								
							 | 
							ioran | 
							⊢ ( ¬  ( { 〈 ∅ ,  ∅ 〉 }  =  ∅  ∨  { 〈 ∅ ,  ∅ 〉 }  =  ∅ )  ↔  ( ¬  { 〈 ∅ ,  ∅ 〉 }  =  ∅  ∧  ¬  { 〈 ∅ ,  ∅ 〉 }  =  ∅ ) )  | 
						
						
							| 21 | 
							
								
							 | 
							xpeq0 | 
							⊢ ( ( { 〈 ∅ ,  ∅ 〉 }  ×  { 〈 ∅ ,  ∅ 〉 } )  =  ∅  ↔  ( { 〈 ∅ ,  ∅ 〉 }  =  ∅  ∨  { 〈 ∅ ,  ∅ 〉 }  =  ∅ ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							biimpi | 
							⊢ ( ( { 〈 ∅ ,  ∅ 〉 }  ×  { 〈 ∅ ,  ∅ 〉 } )  =  ∅  →  ( { 〈 ∅ ,  ∅ 〉 }  =  ∅  ∨  { 〈 ∅ ,  ∅ 〉 }  =  ∅ ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							con3i | 
							⊢ ( ¬  ( { 〈 ∅ ,  ∅ 〉 }  =  ∅  ∨  { 〈 ∅ ,  ∅ 〉 }  =  ∅ )  →  ¬  ( { 〈 ∅ ,  ∅ 〉 }  ×  { 〈 ∅ ,  ∅ 〉 } )  =  ∅ )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							sylbir | 
							⊢ ( ( ¬  { 〈 ∅ ,  ∅ 〉 }  =  ∅  ∧  ¬  { 〈 ∅ ,  ∅ 〉 }  =  ∅ )  →  ¬  ( { 〈 ∅ ,  ∅ 〉 }  ×  { 〈 ∅ ,  ∅ 〉 } )  =  ∅ )  | 
						
						
							| 25 | 
							
								19 19 24
							 | 
							mp2an | 
							⊢ ¬  ( { 〈 ∅ ,  ∅ 〉 }  ×  { 〈 ∅ ,  ∅ 〉 } )  =  ∅  | 
						
						
							| 26 | 
							
								2
							 | 
							0func | 
							⊢ ( 𝜑  →  ( ∅  Func  𝐸 )  =  { 〈 ∅ ,  ∅ 〉 } )  | 
						
						
							| 27 | 
							
								
							 | 
							0cat | 
							⊢ ∅  ∈  Cat  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							⊢ ( 𝜑  →  ∅  ∈  Cat )  | 
						
						
							| 29 | 
							
								28
							 | 
							0func | 
							⊢ ( 𝜑  →  ( ∅  Func  ∅ )  =  { 〈 ∅ ,  ∅ 〉 } )  | 
						
						
							| 30 | 
							
								26 29
							 | 
							xpeq12d | 
							⊢ ( 𝜑  →  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  =  ( { 〈 ∅ ,  ∅ 〉 }  ×  { 〈 ∅ ,  ∅ 〉 } ) )  | 
						
						
							| 31 | 
							
								
							 | 
							df-func | 
							⊢  Func   =  ( 𝑡  ∈  Cat ,  𝑢  ∈  Cat  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  [ ( Base ‘ 𝑡 )  /  𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑢 )  ∧  𝑔  ∈  X 𝑧  ∈  ( 𝑏  ×  𝑏 ) ( ( ( 𝑓 ‘ ( 1st  ‘ 𝑧 ) ) ( Hom  ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd  ‘ 𝑧 ) ) )  ↑m  ( ( Hom  ‘ 𝑡 ) ‘ 𝑧 ) )  ∧  ∀ 𝑥  ∈  𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) )  =  ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ∀ 𝑚  ∈  ( 𝑥 ( Hom  ‘ 𝑡 ) 𝑦 ) ∀ 𝑛  ∈  ( 𝑦 ( Hom  ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) )  =  ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } )  | 
						
						
							| 32 | 
							
								31
							 | 
							reldmmpo | 
							⊢ Rel  dom   Func   | 
						
						
							| 33 | 
							
								
							 | 
							0nelrel0 | 
							⊢ ( Rel  dom   Func   →  ¬  ∅  ∈  dom   Func  )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							ax-mp | 
							⊢ ¬  ∅  ∈  dom   Func   | 
						
						
							| 35 | 
							
								12
							 | 
							eleq1d | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∈  dom   Func   ↔  ∅  ∈  dom   Func  ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							mtbiri | 
							⊢ ( 𝜑  →  ¬  〈 𝐶 ,  𝐷 〉  ∈  dom   Func  )  | 
						
						
							| 37 | 
							
								
							 | 
							df-ov | 
							⊢ ( 𝐶  Func  𝐷 )  =  (  Func  ‘ 〈 𝐶 ,  𝐷 〉 )  | 
						
						
							| 38 | 
							
								
							 | 
							ndmfv | 
							⊢ ( ¬  〈 𝐶 ,  𝐷 〉  ∈  dom   Func   →  (  Func  ‘ 〈 𝐶 ,  𝐷 〉 )  =  ∅ )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							eqtrid | 
							⊢ ( ¬  〈 𝐶 ,  𝐷 〉  ∈  dom   Func   →  ( 𝐶  Func  𝐷 )  =  ∅ )  | 
						
						
							| 40 | 
							
								39
							 | 
							xpeq2d | 
							⊢ ( ¬  〈 𝐶 ,  𝐷 〉  ∈  dom   Func   →  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) )  =  ( ( 𝐷  Func  𝐸 )  ×  ∅ ) )  | 
						
						
							| 41 | 
							
								
							 | 
							xp0 | 
							⊢ ( ( 𝐷  Func  𝐸 )  ×  ∅ )  =  ∅  | 
						
						
							| 42 | 
							
								40 41
							 | 
							eqtrdi | 
							⊢ ( ¬  〈 𝐶 ,  𝐷 〉  ∈  dom   Func   →  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) )  =  ∅ )  | 
						
						
							| 43 | 
							
								36 42
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) )  =  ∅ )  | 
						
						
							| 44 | 
							
								30 43
							 | 
							eqeq12d | 
							⊢ ( 𝜑  →  ( ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  =  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) )  ↔  ( { 〈 ∅ ,  ∅ 〉 }  ×  { 〈 ∅ ,  ∅ 〉 } )  =  ∅ ) )  | 
						
						
							| 45 | 
							
								25 44
							 | 
							mtbiri | 
							⊢ ( 𝜑  →  ¬  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  =  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							rescofuf | 
							⊢ (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ) : ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ⟶ ( ∅  Func  𝐸 )  | 
						
						
							| 47 | 
							
								46
							 | 
							fdmi | 
							⊢ dom  (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  =  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  | 
						
						
							| 48 | 
							
								
							 | 
							rescofuf | 
							⊢ (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) ) : ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) ⟶ ( 𝐶  Func  𝐸 )  | 
						
						
							| 49 | 
							
								48
							 | 
							fdmi | 
							⊢ dom  (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) )  =  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 50 | 
							
								47 49
							 | 
							eqeq12i | 
							⊢ ( dom  (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  =  dom  (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) )  ↔  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  =  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							biimpi | 
							⊢ ( dom  (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  =  dom  (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) )  →  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  =  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							con3i | 
							⊢ ( ¬  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  =  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) )  →  ¬  dom  (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  =  dom  (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							dmeq | 
							⊢ ( (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  =  (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) )  →  dom  (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  =  dom  (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							con3i | 
							⊢ ( ¬  dom  (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  =  dom  (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) )  →  ¬  (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  =  (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) ) )  | 
						
						
							| 55 | 
							
								45 52 54
							 | 
							3syl | 
							⊢ ( 𝜑  →  ¬  (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  =  (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							neqned | 
							⊢ ( 𝜑  →  (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  ≠  (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) ) )  | 
						
						
							| 57 | 
							
								4
							 | 
							reseq2d | 
							⊢ ( 𝜑  →  (  ∘func   ↾  𝑊 )  =  (  ∘func   ↾  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) ) )  | 
						
						
							| 58 | 
							
								56 57
							 | 
							neeqtrrd | 
							⊢ ( 𝜑  →  (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  ≠  (  ∘func   ↾  𝑊 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							ovex | 
							⊢ ( ∅  Func  𝐸 )  ∈  V  | 
						
						
							| 60 | 
							
								
							 | 
							ovex | 
							⊢ ( ∅  Func  ∅ )  ∈  V  | 
						
						
							| 61 | 
							
								59 60
							 | 
							xpex | 
							⊢ ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  ∈  V  | 
						
						
							| 62 | 
							
								
							 | 
							fex | 
							⊢ ( ( (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ) : ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ⟶ ( ∅  Func  𝐸 )  ∧  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  ∈  V )  →  (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  ∈  V )  | 
						
						
							| 63 | 
							
								46 61 62
							 | 
							mp2an | 
							⊢ (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  ∈  V  | 
						
						
							| 64 | 
							
								61 61
							 | 
							mpoex | 
							⊢ ( 𝑢  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ,  𝑣  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  ↦  ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑢 ) )  /  𝑓 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑘 ⦌ ⦋ ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑙 ⦌ ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑣 ) )  /  𝑚 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑣 ) )  /  𝑟 ⦌ ( 𝑏  ∈  ( ( 1st  ‘ 𝑢 ) ( ∅  Nat  𝐸 ) ( 1st  ‘ 𝑣 ) ) ,  𝑎  ∈  ( ( 2nd  ‘ 𝑢 ) ( ∅  Nat  ∅ ) ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑥  ∈  ( Base ‘ ∅ )  ↦  ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) ,  ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) )  ∈  V  | 
						
						
							| 65 | 
							
								
							 | 
							opth1neg | 
							⊢ ( ( (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  ∈  V  ∧  ( 𝑢  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ,  𝑣  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  ↦  ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑢 ) )  /  𝑓 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑘 ⦌ ⦋ ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑙 ⦌ ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑣 ) )  /  𝑚 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑣 ) )  /  𝑟 ⦌ ( 𝑏  ∈  ( ( 1st  ‘ 𝑢 ) ( ∅  Nat  𝐸 ) ( 1st  ‘ 𝑣 ) ) ,  𝑎  ∈  ( ( 2nd  ‘ 𝑢 ) ( ∅  Nat  ∅ ) ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑥  ∈  ( Base ‘ ∅ )  ↦  ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) ,  ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) )  ∈  V )  →  ( (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  ≠  (  ∘func   ↾  𝑊 )  →  〈 (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ) ,  ( 𝑢  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ,  𝑣  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  ↦  ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑢 ) )  /  𝑓 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑘 ⦌ ⦋ ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑙 ⦌ ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑣 ) )  /  𝑚 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑣 ) )  /  𝑟 ⦌ ( 𝑏  ∈  ( ( 1st  ‘ 𝑢 ) ( ∅  Nat  𝐸 ) ( 1st  ‘ 𝑣 ) ) ,  𝑎  ∈  ( ( 2nd  ‘ 𝑢 ) ( ∅  Nat  ∅ ) ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑥  ∈  ( Base ‘ ∅ )  ↦  ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) ,  ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉  ≠  〈 (  ∘func   ↾  𝑊 ) ,  ( 𝑢  ∈  𝑊 ,  𝑣  ∈  𝑊  ↦  ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑢 ) )  /  𝑓 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑘 ⦌ ⦋ ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑙 ⦌ ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑣 ) )  /  𝑚 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑣 ) )  /  𝑟 ⦌ ( 𝑏  ∈  ( ( 1st  ‘ 𝑢 ) ( 𝐷  Nat  𝐸 ) ( 1st  ‘ 𝑣 ) ) ,  𝑎  ∈  ( ( 2nd  ‘ 𝑢 ) ( 𝐶  Nat  𝐷 ) ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) ,  ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 ) )  | 
						
						
							| 66 | 
							
								63 64 65
							 | 
							mp2an | 
							⊢ ( (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) )  ≠  (  ∘func   ↾  𝑊 )  →  〈 (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ) ,  ( 𝑢  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ,  𝑣  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  ↦  ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑢 ) )  /  𝑓 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑘 ⦌ ⦋ ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑙 ⦌ ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑣 ) )  /  𝑚 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑣 ) )  /  𝑟 ⦌ ( 𝑏  ∈  ( ( 1st  ‘ 𝑢 ) ( ∅  Nat  𝐸 ) ( 1st  ‘ 𝑣 ) ) ,  𝑎  ∈  ( ( 2nd  ‘ 𝑢 ) ( ∅  Nat  ∅ ) ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑥  ∈  ( Base ‘ ∅ )  ↦  ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) ,  ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉  ≠  〈 (  ∘func   ↾  𝑊 ) ,  ( 𝑢  ∈  𝑊 ,  𝑣  ∈  𝑊  ↦  ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑢 ) )  /  𝑓 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑘 ⦌ ⦋ ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑙 ⦌ ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑣 ) )  /  𝑚 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑣 ) )  /  𝑟 ⦌ ( 𝑏  ∈  ( ( 1st  ‘ 𝑢 ) ( 𝐷  Nat  𝐸 ) ( 1st  ‘ 𝑣 ) ) ,  𝑎  ∈  ( ( 2nd  ‘ 𝑢 ) ( 𝐶  Nat  𝐷 ) ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) ,  ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 )  | 
						
						
							| 67 | 
							
								58 66
							 | 
							syl | 
							⊢ ( 𝜑  →  〈 (  ∘func   ↾  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ) ,  ( 𝑢  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) ) ,  𝑣  ∈  ( ( ∅  Func  𝐸 )  ×  ( ∅  Func  ∅ ) )  ↦  ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑢 ) )  /  𝑓 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑘 ⦌ ⦋ ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑙 ⦌ ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑣 ) )  /  𝑚 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑣 ) )  /  𝑟 ⦌ ( 𝑏  ∈  ( ( 1st  ‘ 𝑢 ) ( ∅  Nat  𝐸 ) ( 1st  ‘ 𝑣 ) ) ,  𝑎  ∈  ( ( 2nd  ‘ 𝑢 ) ( ∅  Nat  ∅ ) ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑥  ∈  ( Base ‘ ∅ )  ↦  ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) ,  ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉  ≠  〈 (  ∘func   ↾  𝑊 ) ,  ( 𝑢  ∈  𝑊 ,  𝑣  ∈  𝑊  ↦  ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑢 ) )  /  𝑓 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑘 ⦌ ⦋ ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑙 ⦌ ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑣 ) )  /  𝑚 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑣 ) )  /  𝑟 ⦌ ( 𝑏  ∈  ( ( 1st  ‘ 𝑢 ) ( 𝐷  Nat  𝐸 ) ( 1st  ‘ 𝑣 ) ) ,  𝑎  ∈  ( ( 2nd  ‘ 𝑢 ) ( 𝐶  Nat  𝐷 ) ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) ,  ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 )  | 
						
						
							| 68 | 
							
								16 67
							 | 
							eqnetrd | 
							⊢ ( 𝜑  →   ⚬   ≠  〈 (  ∘func   ↾  𝑊 ) ,  ( 𝑢  ∈  𝑊 ,  𝑣  ∈  𝑊  ↦  ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑢 ) )  /  𝑓 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑘 ⦌ ⦋ ( 2nd  ‘ ( 1st  ‘ 𝑢 ) )  /  𝑙 ⦌ ⦋ ( 1st  ‘ ( 2nd  ‘ 𝑣 ) )  /  𝑚 ⦌ ⦋ ( 1st  ‘ ( 1st  ‘ 𝑣 ) )  /  𝑟 ⦌ ( 𝑏  ∈  ( ( 1st  ‘ 𝑢 ) ( 𝐷  Nat  𝐸 ) ( 1st  ‘ 𝑣 ) ) ,  𝑎  ∈  ( ( 2nd  ‘ 𝑢 ) ( 𝐶  Nat  𝐷 ) ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) ,  ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 )  |