Step |
Hyp |
Ref |
Expression |
1 |
|
fucofvalne.c |
⊢ ( 𝜑 → ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) |
2 |
|
fucofvalne.e |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
3 |
|
fucofvalne.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = ⚬ ) |
4 |
|
fucofvalne.w |
⊢ ( 𝜑 → 𝑊 = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) |
5 |
|
0ex |
⊢ ∅ ∈ V |
6 |
5
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
7 |
|
1st0 |
⊢ ( 1st ‘ ∅ ) = ∅ |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( 1st ‘ ∅ ) = ∅ ) |
9 |
|
2nd0 |
⊢ ( 2nd ‘ ∅ ) = ∅ |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 2nd ‘ ∅ ) = ∅ ) |
11 |
|
opprc |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → 〈 𝐶 , 𝐷 〉 = ∅ ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 = ∅ ) |
13 |
12
|
oveq1d |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = ( ∅ ∘F 𝐸 ) ) |
14 |
13 3
|
eqtr3d |
⊢ ( 𝜑 → ( ∅ ∘F 𝐸 ) = ⚬ ) |
15 |
|
eqidd |
⊢ ( 𝜑 → ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) |
16 |
6 8 10 2 14 15
|
fucofvalg |
⊢ ( 𝜑 → ⚬ = 〈 ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) , ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( ∅ Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( ∅ Nat ∅ ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 ) |
17 |
|
opex |
⊢ 〈 ∅ , ∅ 〉 ∈ V |
18 |
17
|
snnz |
⊢ { 〈 ∅ , ∅ 〉 } ≠ ∅ |
19 |
18
|
neii |
⊢ ¬ { 〈 ∅ , ∅ 〉 } = ∅ |
20 |
|
ioran |
⊢ ( ¬ ( { 〈 ∅ , ∅ 〉 } = ∅ ∨ { 〈 ∅ , ∅ 〉 } = ∅ ) ↔ ( ¬ { 〈 ∅ , ∅ 〉 } = ∅ ∧ ¬ { 〈 ∅ , ∅ 〉 } = ∅ ) ) |
21 |
|
xpeq0 |
⊢ ( ( { 〈 ∅ , ∅ 〉 } × { 〈 ∅ , ∅ 〉 } ) = ∅ ↔ ( { 〈 ∅ , ∅ 〉 } = ∅ ∨ { 〈 ∅ , ∅ 〉 } = ∅ ) ) |
22 |
21
|
biimpi |
⊢ ( ( { 〈 ∅ , ∅ 〉 } × { 〈 ∅ , ∅ 〉 } ) = ∅ → ( { 〈 ∅ , ∅ 〉 } = ∅ ∨ { 〈 ∅ , ∅ 〉 } = ∅ ) ) |
23 |
22
|
con3i |
⊢ ( ¬ ( { 〈 ∅ , ∅ 〉 } = ∅ ∨ { 〈 ∅ , ∅ 〉 } = ∅ ) → ¬ ( { 〈 ∅ , ∅ 〉 } × { 〈 ∅ , ∅ 〉 } ) = ∅ ) |
24 |
20 23
|
sylbir |
⊢ ( ( ¬ { 〈 ∅ , ∅ 〉 } = ∅ ∧ ¬ { 〈 ∅ , ∅ 〉 } = ∅ ) → ¬ ( { 〈 ∅ , ∅ 〉 } × { 〈 ∅ , ∅ 〉 } ) = ∅ ) |
25 |
19 19 24
|
mp2an |
⊢ ¬ ( { 〈 ∅ , ∅ 〉 } × { 〈 ∅ , ∅ 〉 } ) = ∅ |
26 |
2
|
0func |
⊢ ( 𝜑 → ( ∅ Func 𝐸 ) = { 〈 ∅ , ∅ 〉 } ) |
27 |
|
0cat |
⊢ ∅ ∈ Cat |
28 |
27
|
a1i |
⊢ ( 𝜑 → ∅ ∈ Cat ) |
29 |
28
|
0func |
⊢ ( 𝜑 → ( ∅ Func ∅ ) = { 〈 ∅ , ∅ 〉 } ) |
30 |
26 29
|
xpeq12d |
⊢ ( 𝜑 → ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( { 〈 ∅ , ∅ 〉 } × { 〈 ∅ , ∅ 〉 } ) ) |
31 |
|
df-func |
⊢ Func = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Base ‘ 𝑡 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑢 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) |
32 |
31
|
reldmmpo |
⊢ Rel dom Func |
33 |
|
0nelrel0 |
⊢ ( Rel dom Func → ¬ ∅ ∈ dom Func ) |
34 |
32 33
|
ax-mp |
⊢ ¬ ∅ ∈ dom Func |
35 |
12
|
eleq1d |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∈ dom Func ↔ ∅ ∈ dom Func ) ) |
36 |
34 35
|
mtbiri |
⊢ ( 𝜑 → ¬ 〈 𝐶 , 𝐷 〉 ∈ dom Func ) |
37 |
|
df-ov |
⊢ ( 𝐶 Func 𝐷 ) = ( Func ‘ 〈 𝐶 , 𝐷 〉 ) |
38 |
|
ndmfv |
⊢ ( ¬ 〈 𝐶 , 𝐷 〉 ∈ dom Func → ( Func ‘ 〈 𝐶 , 𝐷 〉 ) = ∅ ) |
39 |
37 38
|
eqtrid |
⊢ ( ¬ 〈 𝐶 , 𝐷 〉 ∈ dom Func → ( 𝐶 Func 𝐷 ) = ∅ ) |
40 |
39
|
xpeq2d |
⊢ ( ¬ 〈 𝐶 , 𝐷 〉 ∈ dom Func → ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) = ( ( 𝐷 Func 𝐸 ) × ∅ ) ) |
41 |
|
xp0 |
⊢ ( ( 𝐷 Func 𝐸 ) × ∅ ) = ∅ |
42 |
40 41
|
eqtrdi |
⊢ ( ¬ 〈 𝐶 , 𝐷 〉 ∈ dom Func → ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) = ∅ ) |
43 |
36 42
|
syl |
⊢ ( 𝜑 → ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) = ∅ ) |
44 |
30 43
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ↔ ( { 〈 ∅ , ∅ 〉 } × { 〈 ∅ , ∅ 〉 } ) = ∅ ) ) |
45 |
25 44
|
mtbiri |
⊢ ( 𝜑 → ¬ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) |
46 |
|
rescofuf |
⊢ ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) : ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ⟶ ( ∅ Func 𝐸 ) |
47 |
46
|
fdmi |
⊢ dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) |
48 |
|
rescofuf |
⊢ ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) : ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ⟶ ( 𝐶 Func 𝐸 ) |
49 |
48
|
fdmi |
⊢ dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) |
50 |
47 49
|
eqeq12i |
⊢ ( dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ↔ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) |
51 |
50
|
biimpi |
⊢ ( dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) → ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) |
52 |
51
|
con3i |
⊢ ( ¬ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) → ¬ dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ) |
53 |
|
dmeq |
⊢ ( ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) → dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ) |
54 |
53
|
con3i |
⊢ ( ¬ dom ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = dom ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) → ¬ ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ) |
55 |
45 52 54
|
3syl |
⊢ ( 𝜑 → ¬ ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ) |
56 |
55
|
neqned |
⊢ ( 𝜑 → ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ≠ ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ) |
57 |
4
|
reseq2d |
⊢ ( 𝜑 → ( ∘func ↾ 𝑊 ) = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ) |
58 |
56 57
|
neeqtrrd |
⊢ ( 𝜑 → ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ≠ ( ∘func ↾ 𝑊 ) ) |
59 |
|
ovex |
⊢ ( ∅ Func 𝐸 ) ∈ V |
60 |
|
ovex |
⊢ ( ∅ Func ∅ ) ∈ V |
61 |
59 60
|
xpex |
⊢ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ∈ V |
62 |
|
fex |
⊢ ( ( ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) : ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ⟶ ( ∅ Func 𝐸 ) ∧ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ∈ V ) → ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ∈ V ) |
63 |
46 61 62
|
mp2an |
⊢ ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ∈ V |
64 |
61 61
|
mpoex |
⊢ ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( ∅ Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( ∅ Nat ∅ ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ∈ V |
65 |
|
opth1neg |
⊢ ( ( ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ∈ V ∧ ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( ∅ Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( ∅ Nat ∅ ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ∈ V ) → ( ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ≠ ( ∘func ↾ 𝑊 ) → 〈 ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) , ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( ∅ Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( ∅ Nat ∅ ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 ≠ 〈 ( ∘func ↾ 𝑊 ) , ( 𝑢 ∈ 𝑊 , 𝑣 ∈ 𝑊 ↦ ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 ) ) |
66 |
63 64 65
|
mp2an |
⊢ ( ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) ≠ ( ∘func ↾ 𝑊 ) → 〈 ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) , ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( ∅ Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( ∅ Nat ∅ ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 ≠ 〈 ( ∘func ↾ 𝑊 ) , ( 𝑢 ∈ 𝑊 , 𝑣 ∈ 𝑊 ↦ ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 ) |
67 |
58 66
|
syl |
⊢ ( 𝜑 → 〈 ( ∘func ↾ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ) , ( 𝑢 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) , 𝑣 ∈ ( ( ∅ Func 𝐸 ) × ( ∅ Func ∅ ) ) ↦ ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( ∅ Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( ∅ Nat ∅ ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ ∅ ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 ≠ 〈 ( ∘func ↾ 𝑊 ) , ( 𝑢 ∈ 𝑊 , 𝑣 ∈ 𝑊 ↦ ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 ) |
68 |
16 67
|
eqnetrd |
⊢ ( 𝜑 → ⚬ ≠ 〈 ( ∘func ↾ 𝑊 ) , ( 𝑢 ∈ 𝑊 , 𝑣 ∈ 𝑊 ↦ ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) 〉 ) |