Description: Two ordered pairs are not equal if their first components are not equal. (Contributed by Zhi Wang, 7-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opth1neg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≠ 𝐶 → 〈 𝐴 , 𝐵 〉 ≠ 〈 𝐶 , 𝐷 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | ⊢ ( 𝐴 ≠ 𝐶 → ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ) | |
| 2 | opthneg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 〈 𝐴 , 𝐵 〉 ≠ 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ) ) | |
| 3 | 1 2 | imbitrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≠ 𝐶 → 〈 𝐴 , 𝐵 〉 ≠ 〈 𝐶 , 𝐷 〉 ) ) |