Metamath Proof Explorer


Theorem opth1neg

Description: Two ordered pairs are not equal if their first components are not equal. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Assertion opth1neg
|- ( ( A e. V /\ B e. W ) -> ( A =/= C -> <. A , B >. =/= <. C , D >. ) )

Proof

Step Hyp Ref Expression
1 orc
 |-  ( A =/= C -> ( A =/= C \/ B =/= D ) )
2 opthneg
 |-  ( ( A e. V /\ B e. W ) -> ( <. A , B >. =/= <. C , D >. <-> ( A =/= C \/ B =/= D ) ) )
3 1 2 imbitrrid
 |-  ( ( A e. V /\ B e. W ) -> ( A =/= C -> <. A , B >. =/= <. C , D >. ) )