Description: Two ordered pairs are not equal if their first components are not equal. (Contributed by Zhi Wang, 7-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | opth1neg | |- ( ( A e. V /\ B e. W ) -> ( A =/= C -> <. A , B >. =/= <. C , D >. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | |- ( A =/= C -> ( A =/= C \/ B =/= D ) ) |
|
2 | opthneg | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. =/= <. C , D >. <-> ( A =/= C \/ B =/= D ) ) ) |
|
3 | 1 2 | imbitrrid | |- ( ( A e. V /\ B e. W ) -> ( A =/= C -> <. A , B >. =/= <. C , D >. ) ) |