Metamath Proof Explorer


Theorem fuco11

Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
Assertion fuco11 ( 𝜑 → ( 𝑂𝑈 ) = ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) )

Proof

Step Hyp Ref Expression
1 fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
3 fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
4 fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
5 2 funcrcl2 ( 𝜑𝐶 ∈ Cat )
6 3 funcrcl2 ( 𝜑𝐷 ∈ Cat )
7 3 funcrcl3 ( 𝜑𝐸 ∈ Cat )
8 eqidd ( 𝜑 → ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) )
9 5 6 7 1 8 fuco1 ( 𝜑𝑂 = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) )
10 9 fveq1d ( 𝜑 → ( 𝑂𝑈 ) = ( ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ‘ 𝑈 ) )
11 8 4 3 2 fuco2eld ( 𝜑𝑈 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) )
12 11 fvresd ( 𝜑 → ( ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ‘ 𝑈 ) = ( ∘func𝑈 ) )
13 4 fveq2d ( 𝜑 → ( ∘func𝑈 ) = ( ∘func ‘ ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ ) )
14 df-ov ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) = ( ∘func ‘ ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
15 13 14 eqtr4di ( 𝜑 → ( ∘func𝑈 ) = ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) )
16 10 12 15 3eqtrd ( 𝜑 → ( 𝑂𝑈 ) = ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) )